Deep learning-driven digital inverse lithography technology for DMD-based maskless projection lithography

被引:2
作者
Chen, Jing-Tao [1 ,2 ]
Zhao, Yuan-Yuan [1 ,2 ]
Guo, Xu [1 ,2 ]
Duan, Xuan-Ming [1 ,2 ]
机构
[1] Jinan Univ, Inst Photon Technol, Guangdong Prov Key Lab Opt Fiber Sensing & Commun, Guangzhou 511443, Peoples R China
[2] Jinan Univ, Coll Phys & Optoelect Engn, Guangzhou 510632, Peoples R China
基金
中国国家自然科学基金;
关键词
Digital micromirror device; Optical proximity correction; Deep learning; Maskless projection lithography; Edge distance error; OPTIMIZATION;
D O I
10.1016/j.optlastec.2024.111578
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Digital micromirror device (DMD)-based maskless projection lithography has gained significant attention for its maskless, flexible, and cost-effective characteristics. However, when dealing with target layouts smaller than the wavelength scale, optical proximity effects (OPE) pose a significant challenge in achieving precise resist patterns that closely match the intended layout. To address this issue, we introduce an innovative technique called deep learning-driven digital inverse lithography technology (DDILT). This method optimizes the DMD modulation coefficient to implement optical proximity correction (OPC), significantly improving the printability of target layouts. DDILT allows for reverse engineering target layouts that do not align with the DMD pixel grid, effectively overcoming the limitations imposed by DMD pixel size. Notably, DDILT operates at a speed advantage of at least three orders of magnitude compared to alternative methods. In the case of binary amplitude modulation, it reduces edge distance error (EDE) to just 35% of the original value, providing a rapid and efficient solution for addressing large-scale layout challenges.
引用
收藏
页数:9
相关论文
共 37 条
  • [1] A Fast Process-Variation-Aware Mask Optimization Algorithm With a Novel Intensity Modeling
    Awad, Ahmed
    Takahashi, Atsushi
    Tanaka, Satoshi
    Kodama, Chikaaki
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2017, 25 (03) : 998 - 1011
  • [2] DevelSet: Deep Neural Level Set for Instant Mask Optimization
    Chen, Guojin
    Yu, Ziyang
    Liu, Hongduo
    Ma, Yuzhe
    Yu, Bei
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (12) : 5020 - 5033
  • [3] Label-free neural networks-based inverse lithography technology
    Chen, Jing-Tao
    Zhao, Yuan-Yuan
    Zhang, Yang
    Zhu, Jian-Xin
    Duan, Xuan-Ming
    [J]. OPTICS EXPRESS, 2022, 30 (25) : 45312 - 45326
  • [4] Maximizing energy utilization in DMD-based projection lithography
    Deng, Ming-Jie
    Zhao, Yuan-Yuan
    Liang, Zi-Xin
    Chen, Jing-Tao
    Zhang, Yang
    Duan, Xuan-Ming
    [J]. OPTICS EXPRESS, 2022, 30 (04) : 4692 - 4705
  • [5] Maskless lithography based on digital micromirror device (DMD) and double sided microlens and spatial filter array
    Dinh, Duc-Hanh
    Chien, Hung-Liang
    Lee, Yung-Chun
    [J]. OPTICS AND LASER TECHNOLOGY, 2019, 113 : 407 - 415
  • [6] Dosovitskiy A., 2020, ARXIV, DOI [10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929, 10.48550/ARXIV.2010.11929]
  • [7] Lithographic pattern quality enhancement of DMD lithography with spatiotemporal modulated technology
    Guo, Shuping
    Lu, Zifeng
    Xiong, Zheng
    Huang, Long
    Liu, Hua
    Li, Jinhuan
    [J]. OPTICS LETTERS, 2021, 46 (06) : 1377 - 1380
  • [8] Its A., 2006, ARXIV, DOI DOI 10.1088/1361-6552/AC12A9
  • [9] Neural-ILT 2.0: Migrating ILT to Domain-Specific and Multitask-Enabled Neural Network
    Jiang, Bentian
    Liu, Lixin
    Ma, Yuzhe
    Yu, Bei
    Young, Evangeline F. Y.
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (08) : 2671 - 2684
  • [10] Photonic crystal L3 cavity laser fabricated using maskless digital photolithography
    Kang, Minsu
    Heesoo, Jin
    Jeon, Heonsu
    [J]. NANOPHOTONICS, 2022, 11 (10) : 2283 - 2291