SpaINN: equivariant message passing for excited-state nonadiabatic molecular dynamics

被引:6
作者
Mausenberger, Sascha [1 ,2 ]
Mueller, Carolin [3 ,4 ]
Tkatchenko, Alexandre [4 ]
Marquetand, Philipp [1 ]
Gonzalez, Leticia [1 ]
Westermayr, Julia [5 ,6 ]
机构
[1] Univ Vienna, Inst Theoret Chem, Fac Chem, Wahringer Str 17, A-1090 Vienna, Austria
[2] Univ Vienna, Vienna Doctoral Sch Chem DoSChem, Wahringer Str 42, A-1090 Vienna, Austria
[3] Friedrich Alexander Univ Erlangen Nurnberg, Comp Chem Ctr, Dept Chem & Pharm, Nagelsbachstr 25, D-91052 Erlangen, Germany
[4] Univ Luxembourg, Dept Phys & Mat Sci, 162 A,Ave Faiencerie, L-1511 Luxembourg, Luxembourg
[5] Univ Leipzig, Wilhelm Ostwald Inst Phys & Theoret Chem, Linnestr 2, D-04103 Leipzig, Germany
[6] Ctr Scalable Data Analyt & Artificial Intelligence, Dresden, Germany
关键词
DESIGN;
D O I
10.1039/d4sc04164j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Excited-state molecular dynamics simulations are crucial for understanding processes like photosynthesis, vision, and radiation damage. However, the computational complexity of quantum chemical calculations restricts their scope. Machine learning offers a solution by delivering high-accuracy properties at lower computational costs. We present SpaiNN, an open-source Python software for ML-driven surface hopping nonadiabatic molecular dynamics simulations. SpaiNN combines the invariant and equivariant neural network architectures of SchNetPack with SHARC for surface hopping dynamics. Its modular design allows users to implement and adapt modules easily. We compare rotationally-invariant and equivariant representations in fitting potential energy surfaces of multiple electronic states and properties arising from the interaction of two electronic states. Simulations of the methyleneimmonium cation and various alkenes demonstrate the superior performance of equivariant SpaiNN models, improving accuracy, generalization, and efficiency in both training and inference.
引用
收藏
页码:15880 / 15890
页数:11
相关论文
共 56 条
[1]   Photostability and Photostabilization of Drugs and Drug Products [J].
Ahmad, Iqbal ;
Ahmed, Sofia ;
Anwar, Zubair ;
Sheraz, Muhammad Ali ;
Sikorski, Marek .
INTERNATIONAL JOURNAL OF PHOTOENERGY, 2016, 2016
[2]   A Simple Phase Correction Makes a Big Difference in Nonadiabatic Molecular Dynamics [J].
Akimoy, Alexey V. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (20) :6096-6102
[3]  
[Anonymous], SPAINN
[4]  
[Anonymous], SCHNARC
[5]   The role of πσ* excited states in the photodissociation of heteroaromatic molecules [J].
Ashfold, MNR ;
Cronin, B ;
Devine, AL ;
Dixon, RN ;
Nix, MGD .
SCIENCE, 2006, 312 (5780) :1637-1640
[6]   Excited state non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential [J].
Axelrod, Simon ;
Shakhnovich, Eugene ;
Gomez-Bombarelli, Rafael .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]   Ultrafast two-step process in the non- adiabatic relaxation of the CH2NH2+ molecule [J].
Barbatti, M ;
Aquino, AJA ;
Lischka, H .
MOLECULAR PHYSICS, 2006, 104 (5-7) :1053-1060
[8]   Machine learning unifies the modeling of materials and molecules [J].
Bartok, Albert P. ;
De, Sandip ;
Poelking, Carl ;
Bernstein, Noam ;
Kermode, James R. ;
Csanyi, Gabor ;
Ceriotti, Michele .
SCIENCE ADVANCES, 2017, 3 (12)
[9]  
Batatia I., 2022, ARXIV
[10]  
Batzner S, 2022, NAT COMMUN, V13, DOI [10.1038/s41467-022-29939-5, 10.1212/12121]