Catalytically ultrathin titania coating to enhance energy storage and release of aluminum hydride via atomic layer deposition

被引:1
|
作者
Hu, Zhijia [1 ]
Xu, Xingxing [2 ]
Shao, Huachen [1 ]
Luo, Ruidong [2 ]
Wang, Mingxuan [1 ]
Tang, Gen [2 ]
Liu, Xiao [1 ]
Shan, Bin [3 ]
Chen, Rong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Inst Aerosp Chemotechnol, Natl Key Lab Aerosp Chem Power, Xiangyang 441003, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Aluminum hydride; Atomic layer deposition; Titania nanocoating; Thermal stability; Combustion performance; INITIO MOLECULAR-DYNAMICS; THERMAL-DECOMPOSITION; KINETICS; OXIDATION; DEHYDROGENATION; COMBUSTION; MECHANISMS; ALPHA-ALH3; ALH3;
D O I
10.1016/j.cej.2024.155809
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aluminum hydride (AlH3) has attracted much attention owing to its extraordinary hydrogen storage performance, yet AlH3 is prone to hydrogen release reaction during long-term storage, leading to a decrease in energy and hindering its practical application. Herein, AlH3 particles are stabilized by catalytically ultrathin TiO2 coating via atomic layer deposition (ALD), the hydrogen content of which is controllable and reduces only 0.0026 wt% per ALD cycle of TiO2 coating. 30 cycles of TiO2 (2.4 nm) coated AlH3 exhibits a peak decomposition temperature of 203.42 degrees C and decomposition activation energy of 112.21 kJ/mol, which are 7.83 degrees C and 22.64 kJ/mol higher than those of bare AlH3. The hydrogen content loss of TiO2 coated AlH3 under hydrothermal aging conditions is much lower than that of bare AlH3 due to the passivation of defects on native Al2O3 by forming inert Al2O3 and catalytic TiO2 double-shell coating structure. TiO2 coated AlH3 exhibits enhanced combustion performance with stronger flame radiation intensity compared to bare AlH3. The density functional theory calculations indicate that the contact between AlH3 and TiO2 can weaken the strength of Al-H ion bond and promote the release of hydrogen. Our work offers a feasible method for simultaneously improving the stability and energy release of AlH3.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond
    Mattinen, Miika
    Leskela, Markku
    Ritala, Mikko
    ADVANCED MATERIALS INTERFACES, 2021, 8 (06):
  • [32] Constructing ultrathin TiO2 protection layers via atomic layer deposition for stable lithium metal anode cycling
    Wang, Mingming
    Cheng, Xiaopeng
    Cao, Tianci
    Niu, Jiajia
    Wu, Rui
    Liu, Xianqiang
    Zhang, Yuefei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 865
  • [33] Spatially-Modulated Silicon Interface Energetics Via Hydrogen Plasma-Assisted Atomic Layer Deposition of Ultrathin Alumina
    Henning, Alex
    Bartl, Johannes D.
    Wolz, Lukas
    Christis, Maximilian
    Rauh, Felix
    Bissolo, Michele
    Grunleitner, Theresa
    Eichhorn, Johanna
    Zeller, Patrick
    Amati, Matteo
    Gregoratti, Luca
    Finley, Jonathan J.
    Rieger, Bernhard
    Stutzmann, Martin
    Sharp, Ian D.
    ADVANCED MATERIALS INTERFACES, 2023, 10 (06)
  • [34] Controlling the Energy Release Behavior of Aluminum Nanoparticles as Metal Fuels by Atomic Layer Deposited Copper Oxide Nanocoatings
    Hu, Yiyun
    Li, Dan
    Qin, Lijun
    Zhang, Wangle
    Gong, Ting
    Li, Jianguo
    Feng, Hao
    ACS APPLIED NANO MATERIALS, 2024, 7 (19) : 22592 - 22604
  • [35] Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition
    Peters, Aaron W.
    Li, Zhanyong
    Farha, Omar K.
    Hupp, Joseph T.
    ACS NANO, 2015, 9 (08) : 8484 - 8490
  • [36] Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles
    Liu, Xiao
    Su, Yu
    Chen, Rong
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (02)
  • [37] Aluminum Oxide at the Monolayer Limit via Oxidant-Free Plasma-Assisted Atomic Layer Deposition on GaN
    Henning, Alex
    Bartl, Johannes D.
    Zeidler, Andreas
    Qian, Simon
    Bienek, Oliver
    Jiang, Chang-Ming
    Paulus, Claudia
    Rieger, Bernhard
    Stutzmann, Martin
    Sharp, Ian D.
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (33)
  • [38] Achieving remarkable energy storage enhancement in polymer dielectrics via constructing an ultrathin Coulomb blockade layer of gold nanoparticles
    Xia, Shuimiao
    Shi, Zhicheng
    Sun, Kai
    Yin, Peng
    Dastan, Davoud
    Liu, Yao
    Cui, Hongzhi
    Fan, Runhua
    MATERIALS HORIZONS, 2023, 10 (07) : 2476 - 2486
  • [39] Ultrathin atomic layer deposited ZrO2 coating to enhance the electrochemical performance of Li4Ti5O12 as an anode material
    Liu, Jian
    Li, Xifei
    Cai, Mei
    Li, Ruying
    Sun, Xueliang
    ELECTROCHIMICA ACTA, 2013, 93 : 195 - 201
  • [40] Low-Temperature Atomic Layer Deposition of Highly Conformal Tin Nitride Thin Films for Energy Storage Devices
    Ansari, Mohd Zahid
    Nandi, Dip K.
    Janicek, Petr
    Ansari, Sajid Ali
    Ramesh, Rahul
    Cheon, Taehoon
    Shong, Bonggeun
    Kim, Soo-Hyun
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) : 43608 - 43621