The Kernel-Based Regression for Seismic Attenuation Estimation on Wasserstein Space

被引:0
作者
Zhang, Mingke [1 ]
Gao, Jinghuai [1 ]
Wang, Zhiguo [2 ]
Yang, Yang [1 ]
Liu, Naihao [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Estimation; Manifolds; Kernel; Attenuation; Accuracy; Robustness; Reflection; Inhomogeneous viscoelastic medium; kernel-based regression; manifold; seismic attenuation; QUALITY FACTOR-Q; FREQUENCY;
D O I
10.1109/TGRS.2024.3437673
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic attenuation, parameterized as quality factor Q, holds great significance in enhancing seismic resolution and reservoir characterization. Most methods for estimating Q values are performed in the frequency domain, however, the frequency spectrum of the seismic data may usually be influenced by the closely adjacent reflections and the seismic noise, leading to an unreliable Q estimation. To address this challenge, we propose a kernel-based regression method for Q estimation on manifolds. This supervised learning model computes the kernel function on the tangent space of the manifold. We apply this method to Euclidean space, Spherical manifold, and Wasserstein spaces, and provide a detailed comparison of their performance. Our experimental results using synthetic data demonstrate a significant improvement in both robustness and accuracy compared to conventional methods. Furthermore, the validation of our methodology using real data confirms its effectiveness and superiority. Notably, our method on Wasserstein space consistently outperforms others in all experiments.
引用
收藏
页数:12
相关论文
共 44 条
  • [1] Arnold DV, 2014, LECT NOTES COMPUT SC, V8672, P882
  • [2] Attenuation estimation using high resolution time-frequency transforms
    Baptiste Tary, Jean
    van der Baan, Mirko
    Herrera, Roberto Henry
    [J]. DIGITAL SIGNAL PROCESSING, 2017, 60 : 46 - 55
  • [3] Geodesic PCA in the Wasserstein space by convex PCA
    Bigot, Jeremie
    Gouet, Raul
    Klein, Thierry
    Lopez, Alfredo
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01): : 1 - 26
  • [4] Blias E., Geophysics, V77, P149
  • [5] The Wasserstein-Fourier Distance for Stationary Time Series
    Cazelles, Elsa
    Robert, Arnaud
    Tobar, Felipe
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 709 - 721
  • [6] Joint Reflectivity and Structural Interval-Q Estimation by Using Nonstationary Sparse Inversion
    Cheng, Liang
    Yuan, Sanyi
    Wang, Shangxu
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (05) : 776 - 780
  • [7] The velocity and attenuation anisotropy of shale at ultrasonic frequency
    Deng, Jixin
    Wang, Shangxu
    Han, De-hua
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2009, 6 (03) : 269 - 278
  • [8] Kernel Methods in Hyperbolic Spaces
    Fang, Pengfei
    Harandi, Mehrtash
    Petersson, Lars
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 10645 - 10654
  • [9] Feragen A, 2015, PROC CVPR IEEE, P3032, DOI 10.1109/CVPR.2015.7298922
  • [10] DISPERSIVE BODY WAVES
    FUTTERMAN, WI
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (13): : 5279 - &