Machine Learning of Cardiac Anatomy and the Risk of New-Onset Atrial Fibrillation After TAVR

被引:0
|
作者
Brahier, Mark S. [1 ,2 ,3 ,4 ]
Kochi, Shwetha [2 ]
Huang, Julia [2 ]
Piliponis, Emma [2 ]
Smith, Andrew [2 ]
Johnson, Adam [2 ]
Poian, Suraya [2 ]
Abdulkareem, Musa [5 ,6 ,7 ]
Ma, Xiaoyang [2 ]
Wu, Colin [8 ]
Piccini, Jonathan P. [3 ,4 ]
Petersen, Steffen [5 ,6 ,7 ,9 ]
Vargas, Jose D. [10 ]
机构
[1] Duke Univ Hosp, 2301 Erwin Rd, Durham, NC 27710 USA
[2] Georgetown Univ, Med Ctr, Washington, DC USA
[3] Duke Univ Hosp, Duke Heart Ctr, Electrophysiol Sect, Durham, NC USA
[4] Duke Clin Res Inst, Durham, NC USA
[5] Barts Hlth Natl Hlth Serv NHS Trust, Barts Heart Ctr, London, England
[6] Queen Mary Univ London, Natl Inst Hlth Res NIHR, William Harvey Res Inst, Barts Biomed Res Ctr, London, England
[7] Hlth Data Res UK, London, England
[8] Natl Heart Lung & Blood Inst, Bethesda, MD USA
[9] Alan Turing Inst, London, England
[10] Vet Affairs Med Ctr, Washington, DC USA
基金
英国工程与自然科学研究理事会;
关键词
cardiac imaging; machine learning; new-onset atrial fibrillation; TAVR; AORTIC-VALVE-REPLACEMENT; BODY-MASS INDEX; EPICARDIAL ADIPOSE-TISSUE; TRANSCATHETER; OUTCOMES; IMPLANTATION; SURVIVAL; STENOSIS; FRAILTY; OBESITY;
D O I
10.1016/j.jacep.2024.04.006
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND New-onset atrial fibrillation (NOAF) occurs in 5% to 15% of patients who undergo transfemoral transcatheter aortic valve replacement (TAVR). Cardiac imaging has been underutilized to predict NOAF following TAVR. OBJECTIVES The objective of this analysis was to compare and assess standard, manual echocardiographic and cardiac computed tomography (cCT) measurements as well as machine learning-derived cCT measurements of left atrial volume index and epicardial adipose tissue as risk factors for NOAF following TAVR. METHODS The study included 1,385 patients undergoing elective, transfemoral TAVR for severe, symptomatic aortic stenosis. Each patient had standard and machine learning-derived measurements of left atrial volume and epicardial adipose tissue from cardiac computed tomography. The outcome of interest was NOAF within 30 days following TAVR. We used a 2-step statistical model including random forest for variable importance ranking, followed by multivariable logistic regression for predictors of highest importance. Model discrimination was assessed by using the C-statistic to compare the performance of the models with and without imaging. RESULTS Forty-seven (5.0%) of 935 patients without pre-existing atrial fibrillation (AF) experienced NOAF. Patients with pre-existing AF had the largest left atrial volume index at 76.3 f 28.6 cm3/m2 followed by NOAF at 68.1 f 26.6 cm3/m2 and then no AF at 57.0 f 21.7 cm3/m2 (P < 0.001). Multivariable regression identified the following risk factors in association with NOAF: left atrial volume index >= 76 cm2 (OR: 2.538 [95% CI: 1.165-5.531]; P = 0.0191), body mass index <22 kg/m2 (OR: 4.064 [95% CI: 1.500-11.008]; P = 0.0058), EATv (OR: 1.007 [95% CI: 1.000-1.014]; P = 0.043), aortic annulus area >= 659 mm2 (OR: 6.621 [95% CI: 1.849-23.708]; P = 0.004), and sinotubular junction diameter >= 35 mm (OR: 3.891 [95% CI: 1.040-14.552]; P = 0.0435). The C-statistic of the model was 0.737, compared with 0.646 in a model that excluded imaging variables. CONCLUSIONS Underlying cardiac structural differences derived from cardiac imaging may be useful in predicting NOAF following transfemoral TAVR, independent of other clinical risk factors. (JACC Clin Electrophysiol 2024;10:1873-1884) (c) 2024 the American College of Cardiology Foundation. Published by Elsevier. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:1873 / 1884
页数:12
相关论文
共 50 条
  • [21] Pulse pressure and risk of new-onset atrial fibrillation
    不详
    EUROPEAN JOURNAL OF CARDIOVASCULAR PREVENTION & REHABILITATION, 2007, 14 (02): : 353 - 353
  • [22] Obesity and the risk of new-onset atrial fibrillation - In reply
    Wang, TJ
    Parise, H
    Sullivan, LM
    Levy, D
    Wolf, PA
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2005, 293 (16): : 1975 - 1975
  • [23] Pulse pressure and risk of new-onset atrial fibrillation
    Mitchell, Gary F.
    Vasan, Ramachandran S.
    Keyes, Michelle J.
    Parise, Helen
    Wang, Thomas J.
    Larson, Martin G.
    D'Agostino, Ralph B., Sr.
    Kannel, William B.
    Levy, Daniel
    Benjamin, Emelia J.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2007, 297 (07): : 709 - 715
  • [24] New-onset atrial fibrillation after esophagectomy for cancer
    Seesing, Maarten F. J.
    Borggreve, Alicia S.
    Ruurda, Jelle P.
    van Hillegersberg, Richard
    JOURNAL OF THORACIC DISEASE, 2019, 11 : S831 - S834
  • [25] New-onset atrial fibrillation after pacemaker implantation
    Marinheiro, A. R.
    Amador, P.
    Parreira, L.
    Lopes, C.
    Fernandes, A.
    Venancio, J.
    Sa, C.
    Duarte, T.
    Fonseca, M.
    Farinha, J.
    Caria, R.
    EUROPEAN HEART JOURNAL, 2017, 38 : 367 - 367
  • [26] Predicting stroke risk after sepsis hospitalization with new-onset atrial fibrillation
    Myers, Laura C.
    Peltan, Ithan D.
    Thai, Khanh K.
    Kipnis, Patricia
    Desai, Manisha
    Devis, Ycar
    Clancy, Heather
    Lu, Yun W.
    Brown, Samuel M.
    Go, Alan S.
    Neugebauer, Romain S.
    Liu, Vincent X.
    Walkey, Allan J.
    JOURNAL OF HOSPITAL MEDICINE, 2024, 19 (07) : 565 - 571
  • [27] PREDICTION OF NEW-ONSET ATRIAL FIBRILLATION IN PATIENTS WITH HYPERTROPHIC CARDIOMYOPATHY USING MACHINE LEARNING
    Lu, Ree
    Lumish, Heidi
    Hasegawa, Kohei
    Fifer, Michael A.
    Maurer, Mathew S.
    Reilly, Muredach P.
    Tower-Rader, Albree
    Weiner, Shepard D.
    Shimada, Yuichi J.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 506 - 506
  • [28] Risk of ischemic stroke after new-onset atrial fibrillation in patients with hyperthyroidism
    Siu, Chung-Wah
    Pong, Vincent
    Zhang, Xuehua
    Chan, Yap-Hang
    Jim, Man-Hong
    Liu, Shasha
    Yiu, Kai-Hang
    Kung, Annie W. C.
    Lau, Chu-Pak
    Tse, Hung-Fat
    HEART RHYTHM, 2009, 6 (02) : 169 - 173
  • [29] Prediction of new-onset atrial fibrillation in patients with hypertrophic cardiomyopathy using machine learning
    Lu, Ree
    Lumish, Heidi S.
    Hasegawa, Kohei
    Maurer, Mathew S.
    Reilly, Muredach P.
    Weiner, Shepard D.
    Tower-Rader, Albree
    Fifer, Michael A.
    Shimada, Yuichi J.
    EUROPEAN JOURNAL OF HEART FAILURE, 2025, 27 (02) : 275 - 284
  • [30] Machine learning in the prediction and detection of new-onset atrial fibrillation in ICU: a systematic review
    Glaser, Krzysztof
    Marino, Luca
    Stubnya, Janos Domonkos
    Bilotta, Federico
    JOURNAL OF ANESTHESIA, 2024, 38 (03) : 301 - 308