Design strategy to simultaneously enhance electrical conductivity and strength: Cold-drawn copper-based composite wire with in-situ graphene

被引:4
作者
Zhou, Kun [1 ,2 ]
Sun, Wanting [2 ]
Liu, Qianyi [2 ]
Wang, Jijun [2 ]
Wang, Yu [2 ]
Kong, Xiangqing [2 ]
Zhang, Ruixiang [2 ]
Fu, Ying [2 ]
Wu, Muhong [2 ,3 ,4 ,5 ]
Liu, Kaihui [2 ,3 ]
机构
[1] Liaoning Univ, Sch Phys, Shenyang 110036, Peoples R China
[2] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
[3] Peking Univ, Int Ctr Quantum Mat, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[4] Peking Univ, Interdisciplinary Inst Light Element Quantum Mat, Beijing 100871, Peoples R China
[5] Peking Univ, Res Ctr Light Element Adv Mat, Beijing 100871, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 30卷
基金
中国国家自然科学基金;
关键词
Copper matrix composite; Chemical vapor deposition; Microstructure evolution; Electrical conductivity; Strengthening mechanism; MECHANICAL-PROPERTIES; THERMAL-CONDUCTIVITY; GROWN GRAPHENE; CU; RESISTANCE; RESISTIVITY;
D O I
10.1016/j.jmrt.2024.05.199
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We proposed a unique wire-production process by rolling up and drawing chemical vapor deposition copper/ graphene (Cu/Gr) foils, and a good strength-conductivity trade-off was achieved originating from the dispersed Gr in Cu matrix and the high-quality heterointerfaces. The 1.14 mm cold-drawn composite wire exhibited a tensile strength of 455 +/- 5 MPa and a conductivity of 98.18 +/- 0.16 % of the International Annealed Copper Standard (IACS), and the tensile strength was 250 +/- 2 MPa with a satisfied electrical conductivity of 101.68 +/- 0.52 % IACS upon annealing. The microstructure involution during the preparing process was revealed, and the reinforcement mechanisms in the yield strength and conductivity due to the introduced Gr were clarified. The results indicated that the Gr plays a role in pinning dislocations and preventing grain boundary movement during deformation and the subsequent annealing, thereby enhancing the strength of the Cu matrix. Meanwhile, the CuGr coupling interfaces exhibited an electronic doping effect, enhancing the conductive properties. Our work presented a feasible method for preparing Cu/Gr composite wire with comprehensive electrical conductivity and strength optimization.
引用
收藏
页码:8925 / 8937
页数:13
相关论文
共 65 条
[41]   The effects of graphene content on the corrosion resistance , and electrical , thermal and mechanical properties of graphene/copper composites [J].
Wang Jian ;
Guo Li-na ;
Lin Wan-ming ;
Chen Jin ;
Zhang Shuai ;
Chen Shao-da ;
Zhen Tian-tian ;
Zhang Yu-yang .
NEW CARBON MATERIALS, 2019, 34 (02) :161-169
[42]   Graphene-copper composite with micro-layered grains and ultrahigh strength [J].
Wang, Lidong ;
Yang, Ziyue ;
Cui, Ye ;
Wei, Bing ;
Xu, Shichong ;
Sheng, Jie ;
Wang, Miao ;
Zhu, Yunpeng ;
Fei, Weidong .
SCIENTIFIC REPORTS, 2017, 7
[43]   A novel approach for in-situ preparation of copper/graphene composite with high hardness and high electrical conductivity [J].
Wang, Meng ;
Zuo, Tingting ;
Xue, Jiangli ;
Ru, Yadong ;
Wu, Yue ;
Xu, Zhuang ;
Gao, Zhaoshun ;
Han, Li ;
Xiao, Liye .
MATERIALS LETTERS, 2022, 319
[44]   Achieving high strength and electrical properties in drawn fine Cu matrix composite wire reinforced by in-situ grown graphene [J].
Wang, Miao ;
Sheng, Jie ;
Wang, Li-Dong ;
Wang, Gang ;
Fei, Wei-Dong .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 :3205-3210
[45]   Direct synthesis of high-quality graphene on Cu powders from adsorption of small aromatic hydrocarbons: A route to high strength and electrical conductivity for graphene/Cu composite [J].
Wang, Miao ;
Wang, Li-Dong ;
Sheng, Jie ;
Yang, Zi-Yue ;
Shi, Zhen-Dong ;
Zhu, Yun-Peng ;
Li, Jie ;
Fei, Wei-Dong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 798 :403-413
[46]   Seeded growth of large single-crystal copper foils with high-index facets [J].
Wu, Muhong ;
Zhang, Zhibin ;
Xu, Xiaozhi ;
Zhang, Zhihong ;
Duan, Yunrui ;
Dong, Jichen ;
Qiao, Ruixi ;
You, Sifan ;
Wang, Li ;
Qi, Jiajie ;
Zou, Dingxin ;
Shang, Nianze ;
Yang, Yubo ;
Li, Hui ;
Zhu, Lan ;
Sun, Junliang ;
Yu, Haijun ;
Gao, Peng ;
Bai, Xuedong ;
Jiang, Ying ;
Wang, Zhu-Jun ;
Ding, Feng ;
Yu, Dapeng ;
Wang, Enge ;
Liu, Kaihui .
NATURE, 2020, 581 (7809) :406-+
[47]   Adhesion energy of as-grown graphene on copper foil with a blister test [J].
Xin, Hao ;
Borduin, Russell ;
Jiang, Wei ;
Liechti, Kenneth M. ;
Li, Wei .
CARBON, 2017, 123 :243-249
[48]   Microstructure Evolution of Graphene and the Corresponding Effect on the Mechanical/Electrical Properties of Graphene/Cu Composite during Rolling Treatment [J].
Xiu, Ziyang ;
Ju, Boyu ;
Zhan, Junhai ;
Zhang, Ningbo ;
Wang, Zhijun ;
Mei, Yong ;
Liu, Jinming ;
Feng, Yuhan ;
Guo, Yixin ;
Kang, Pengchao ;
Zhang, Qiang ;
Yang, Wenshu .
MATERIALS, 2022, 15 (03)
[49]  
Xu T, 2018, WOODH PUB SER ELECT, P137, DOI 10.1016/B978-0-08-102053-1.00005-3
[50]   Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil [J].
Xu, Xiaozhi ;
Zhang, Zhihong ;
Dong, Jichen ;
Yi, Ding ;
Niu, Jingjing ;
Wu, Muhong ;
Lin, Li ;
Yin, Rongkang ;
Li, Mingqiang ;
Zhou, Jingyuan ;
Wang, Shaoxin ;
Sun, Junliang ;
Duan, Xiaojie ;
Gao, Peng ;
Jiang, Ying ;
Wu, Xiaosong ;
Peng, Hailin ;
Ruoff, Rodney S. ;
Liu, Zhongfan ;
Yu, Dapeng ;
Wang, Enge ;
Ding, Feng ;
Liu, Kaihui .
SCIENCE BULLETIN, 2017, 62 (15) :1074-1080