Information entropy in spin-orbit coupled dipolar condensates with magnetic field

被引:0
作者
Zhao, Qiang [1 ]
机构
[1] North China Univ Sci & Technol, Dept Appl Phys, Tangshan 550001, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2025年 / 39卷 / 11期
关键词
Information entropy; spin-orbit coupled; dipolar condensates; magnetic field; NUMERICAL-METHODS; GROUND-STATES; EINSTEIN; EFFICIENT; DYNAMICS;
D O I
10.1142/S0217979225500845
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we study the formation of Shannon information entropy in spin-orbit coupled (SOC) spin-1 antiferromagnetic dipolar Bose-Einstein condensates with external magnetic field. Our results show that, in the absence of magnetic field and with an increase in dipole-dipole interaction (DDI), information entropy in position space Sr and momentum space Sk remains almost unchanged and increases, respectively. Meanwhile, the order parameter delta decreases, which implies that the system develops toward a disorder state. With the increase of SOC strength, Sr, Sk and delta show similar dynamics behavior. Whereas, in the presence of magnetic field, Sk and delta are localized in the small scope by increasing the dipole and SOC strength. In addition, the value of Sr is nearly the same in this process. These results embody that the introduction of external magnetic field suppresses the role of SOC and DDI, and impedes the condensates towards disorder state. At last, the influence of geometric structure and atom number on information entropy is investigated. It is seen that a narrower trap and fewer atom number make Sr decrease and Sk increase.
引用
收藏
页数:11
相关论文
共 46 条
[1]  
Anderson E., 1999, Lapack users guide, V3rd
[2]   Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates [J].
Bao, Weizhu ;
Chern, I-Liang ;
Lim, Fong Yin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 219 (02) :836-854
[3]   Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates [J].
Bao, Weizhu ;
Cai, Yongyong ;
Wang, Hanquan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) :7874-7892
[4]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[5]   Direct measurement of nonlinear properties of bipartite quantum states [J].
Bovino, FA ;
Castagnoli, G ;
Ekert, A ;
Horodecki, P ;
Alves, CM ;
Sergienko, AV .
PHYSICAL REVIEW LETTERS, 2005, 95 (24)
[6]  
Chatterjee S, 2020, REP MATH PHYS, V85, P281, DOI 10.1016/S0034-4877(20)30030-6
[7]   Simple determination of Na2 scattering lengths using observed bound levels at the ground state asymptote [J].
Crubellier, A ;
Dulieu, O ;
Masnou-Seeuws, F ;
Elbs, M ;
Knöckel, H ;
Tiemann, E .
EUROPEAN PHYSICAL JOURNAL D, 1999, 6 (02) :211-220
[8]   Renyi entropy and the thermodynamic stability of black holes [J].
Czinner, Viktor G. ;
Iguchi, Hideo .
PHYSICS LETTERS B, 2016, 752 :306-310
[9]   Colloquium: Artificial gauge potentials for neutral atoms [J].
Dalibard, Jean ;
Gerbier, Fabrice ;
Juzeliunas, Gediminas ;
Oehberg, Patrik .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1523-1543
[10]   Non-extensive thermodynamics of the radiation in heterogeneous thermal plasmas [J].
Dragan, G. S. ;
Kutarov, V. V. ;
Bekshaev, A. Y. .
CONDENSED MATTER PHYSICS, 2022, 25 (01)