The aerosol-assisted chemical vapour deposition of Mo-doped BiVO4 photoanodes for solar water splitting: an experimental and computational study

被引:2
作者
Zhao, Shaobin [1 ]
Jia, Chenglin [2 ]
Shen, Xinyi [1 ]
Li, Ruohao [1 ]
Oldham, Louise [1 ]
Moss, Benjamin [1 ]
Tam, Brian [1 ,3 ]
Pike, Sebastian [4 ]
Harrison, Nicholas [1 ,5 ]
Ahmad, Ehsan [1 ,5 ]
Kafizas, Andreas [1 ,6 ]
机构
[1] Imperial Coll London, Dept Chem, Mol Sci Res Hub, White City Campus, London W12 0BZ, England
[2] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England
[3] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[4] Univ Warwick, Dept Chem, Coventry CV4 7AL, England
[5] Imperial Coll London, Royal Sch Mines, London Ctr Theory & Simulat Mat, Thomas Young Ctr, London SW7 2AZ, England
[6] Imperial Coll London, London Ctr Nanotechnol, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
HYDROGEN-PRODUCTION; CARRIER DYNAMICS; BAND-GAPS; OXIDATION; PERFORMANCE; HETEROSTRUCTURE; PHOTOELECTRODES; CLINOBISVANITE; SPECTROSCOPY; POTENTIALS;
D O I
10.1039/d4ta02605e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
BiVO4 is one of the most promising light absorbing materials for use in photoelectrochemical (PEC) water splitting devices. Although intrinsic BiVO4 suffers from poor charge carrier mobility, this can be overcome by Mo-doping. However, for Mo-doped BiVO4 to be applied in commercial PEC water splitting devices, scalable routes to high performance materials need to be developed. Herein, we propose a scalable aerosol-assisted chemical vapour deposition (AA-CVD) route to high performance Mo-doped BiVO4. The materials were characterised using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-visible absorption spectroscopy, and a range of PEC tests. By studying a range of Mo-precursor doping levels (0 to 12% Mo : V), an optimum precursor doping level was found (6% Mo : V); substituting V5+ sites in the host structure as Mo6+. In PEC water oxidation the highest performing material showed an onset of photocurrent (J(on)) at similar to 0.6 V-RHE and a theoretical solar photocurrent (TSP) of similar to 1.79 mA cm(-2) at 1.23 V-RHE and 1 sun irradiance. Importantly, Mo-doping was found to induce a phase change from monoclinic clinobisvanite (m-BiVO4), found in undoped BiVO4, to tetragonal scheelite (t-BiVO4). The effect of Mo-doping on the phase stability, structural and electronic properties was examined with all-electron hybrid exchange density functional theory (DFT) calculations. Doping into V and Bi sites at 6.25 and 12.5 at% was calculated for t-BiVO4 and m-BiVO4 phases. In accord with our observations, 6.25 at% Mo doping into the V sites in t-BiVO4 is found to be energetically favoured over doping into m-BiVO4 (by 2.33 meV per Mo atom inserted). The computed charge density is consistent with n-doping of the lattice as Mo6+ replaces V5+ generating an occupied mid-gap state similar to 0.4 eV below the conduction band minimum (CBM) which is primarily of Mo-4d character. Doubling this doping level to 12.5 at% in t-BiVO4 resulted in the mid-gap state merging with the CBM and the formation of a degenerate semiconductor with electrons distributed over the 3d orbitals of V ions residing in the [001] plane. In conjunction with our experimental findings, this strongly suggests that it is the increased electron conductivity due to Mo doping of BiVO4 that produces a more active photoanode for water splitting, and that this maximises between 6.25 to 12.5 at% doping.
引用
收藏
页码:26645 / 26666
页数:22
相关论文
empty
未找到相关数据