Synthetic data at scale: a development model to efficiently leverage machine learning in agriculture

被引:0
|
作者
Klein, Jonathan [1 ]
Waller, Rebekah [2 ]
Pirk, Soeren [3 ]
Palubicki, Wojtek [4 ]
Tester, Mark [2 ]
Michels, Dominik L. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Computat Sci Grp, Thuwal, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Ctr Desert Agr, Thuwal, Saudi Arabia
[3] Christian Albrechts Univ Kiel, Inst Comp Sci, Kiel, Germany
[4] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
来源
FRONTIERS IN PLANT SCIENCE | 2024年 / 15卷
关键词
artificial intelligence; data generation and annotation; disease detection; greenhouse farming; machine learning; synthetic data; tomato plants;
D O I
10.3389/fpls.2024.1360113
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The rise of artificial intelligence (AI) and in particular modern machine learning (ML) algorithms during the last decade has been met with great interest in the agricultural industry. While undisputedly powerful, their main drawback remains the need for sufficient and diverse training data. The collection of real datasets and their annotation are the main cost drivers of ML developments, and while promising results on synthetically generated training data have been shown, their generation is not without difficulties on their own. In this paper, we present a development model for the iterative, cost-efficient generation of synthetic training data. Its application is demonstrated by developing a low-cost early disease detector for tomato plants (Solanum lycopersicum) using synthetic training data. A neural classifier is trained by exclusively using synthetic images, whose generation process is iteratively refined to obtain optimal performance. In contrast to other approaches that rely on a human assessment of similarity between real and synthetic data, we instead introduce a structured, quantitative approach. Our evaluation shows superior generalization results when compared to using non-task-specific real training data and a higher cost efficiency of development compared to traditional synthetic training data. We believe that our approach will help to reduce the cost of synthetic data generation in future applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Machine Learning, Synthetic Data, and the Politics of Difference
    Jacobsen, Benjamin N.
    THEORY CULTURE & SOCIETY, 2025,
  • [2] Synthetic satellite telemetry data for machine learning
    Schefels, Clemens
    Schlag, Leonard
    Helmsauer, Kathrin
    CEAS SPACE JOURNAL, 2025,
  • [3] A Banking Platform to Leverage Data Driven Marketing with Machine Learning
    Torrens, Marc
    Tabakovic, Amir
    ENTROPY, 2022, 24 (03)
  • [4] Machine learning and the politics of synthetic data
    Jacobsen, Benjamin N.
    BIG DATA & SOCIETY, 2023, 10 (01)
  • [5] On the Utility of Synthetic Data: An Empirical Evaluation on Machine Learning Tasks
    Hittmeir, Markus
    Ekelhart, Andreas
    Mayer, Rudolf
    14TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY AND SECURITY (ARES 2019), 2019,
  • [6] Development of a Deployment Strategy to Enable SMEs to Leverage Machine Learning Potential
    Savadogo M.
    Stonis M.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2023, 118 (04): : 276 - 279
  • [7] Big Data and Machine Learning With Hyperspectral Information in Agriculture
    Ang, Kenneth Li-Minn
    Seng, Jasmine Kah Phooi
    IEEE ACCESS, 2021, 9 : 36699 - 36718
  • [8] A Survey of Synthetic Data Generation for Machine Learning
    Abufadda, Mohammad
    Mansour, Khalid
    2021 22ND INTERNATIONAL ARAB CONFERENCE ON INFORMATION TECHNOLOGY (ACIT), 2021, : 488 - 494
  • [9] Using Imbalanced Triangle Synthetic Data for Machine Learning Anomaly Detection
    Luo, Menghua
    Wang, Ke
    Cai, Zhiping
    Liu, Anfeng
    Li, Yangyang
    Cheang, Chak Fong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 58 (01): : 15 - 26
  • [10] Cotton Yield Prediction: A Machine Learning Approach With Field and Synthetic Data
    Mitra, Alakananda
    Beegum, Sahila
    Fleisher, David
    Reddy, Vangimalla R.
    Sun, Wenguang
    Ray, Chittaranjan
    Timlin, Dennis
    Malakar, Arindam
    IEEE ACCESS, 2024, 12 : 101273 - 101288