Electrical Double Layers Modulate the Growth of Solid-Electrolyte Interphases

被引:3
|
作者
Kim, Jaehyeon [1 ,2 ]
Zhao, Fujia [1 ,2 ]
Bonagiri, Lalith Krishna Samanth [2 ,3 ]
Ai, Qian [1 ,2 ]
Zhang, Yingjie [1 ,2 ,4 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
ATOMIC-FORCE MICROSCOPY; SOLVATION SHEATH STRUCTURE; OXYGEN REDUCTION REACTION; IN-SITU; ELECTROCHEMICAL STABILITY; HYDRATION STRUCTURES; ETHYLENE-CARBONATE; IONIC LIQUIDS; SEI FORMATION; SPECTROSCOPY;
D O I
10.1021/acs.chemmater.4c01745
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-electrolyte interphases (SEIs), oftentimes viewed as the most important yet least understood part of alkali-ion and alkali metal batteries, remain a key bottleneck for battery design. Despite extensive research in the past few decades, to date we have only begun to unravel the structure of SEIs, while their dynamic nucleation and growth mechanism is still elusive. Here we discuss the existing progress in characterizing SEIs in the battery community and propose that SEI growth depends critically on the electrical double layer (EDL) structure, a factor that has been largely hidden or ignored to date. We will further discuss methods for simultaneously characterizing EDL and SEIs, with a particular focus on emerging electrochemical 3D atomic force microscopy (EC-3D-AFM) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) techniques. In the end, we will propose strategies for predictive design of electrolytes to enable controlled EDL and SEI structures and achieve the desired battery performance.
引用
收藏
页码:9156 / 9166
页数:11
相关论文
共 50 条
  • [41] General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes
    Gao, Yue
    Yi, Ran
    Li, Yuguang C.
    Song, Jiangxuan
    Chen, Shuru
    Huang, Qingquan
    Mallouk, Thomas E.
    Wang, Donghai
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (48) : 17359 - 17367
  • [42] Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization
    Cao, Xia
    Ren, Xiaodi
    Zou, Lianfeng
    Engelhard, Mark H.
    Huang, William
    Wang, Hansen
    Matthews, Bethany E.
    Lee, Hongkyung
    Niu, Chaojiang
    Arey, Bruce W.
    Cui, Yi
    Wang, Chongmin
    Xiao, Jie
    Liu, Jun
    Xu, Wu
    Zhang, Ji-Guang
    NATURE ENERGY, 2019, 4 (09) : 796 - 805
  • [43] Mechanistic understanding of lithium-anode protection by organosulfide-based solid-electrolyte interphases and its implications
    Bhargav, Amruth
    Asl, Hooman Yaghoobnejad
    Manthiram, Arumugam
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (18) : 9772 - 9783
  • [44] Growth of the solid-electrolyte interphase: Electron diffusion versus solvent diffusion
    Koebbing, Lukas
    Latz, Arnulf
    Horstmann, Birger
    JOURNAL OF POWER SOURCES, 2023, 561
  • [45] THE ELECTRICAL-PROPERTIES OF THE SOLID-ELECTROLYTE LI2ZRN2
    VOLKOVA, OV
    OBROSOV, VP
    BATALOV, NN
    MARTEMYANOVA, ZS
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 1993, 29 (11) : 1199 - 1200
  • [46] Solid-Electrolyte Interphase During Battery Cycling: Theory of Growth Regimes
    von Kolzenberg, Lars
    Latz, Arnulf
    Horstmann, Birger
    CHEMSUSCHEM, 2020, 13 (15) : 3901 - 3910
  • [47] ION INJECTION INTO SOLID-ELECTROLYTE FILMS
    GUREVICH, YY
    LVOV, AL
    NIMON, ES
    KHARKATS, YI
    FIZIKA TVERDOGO TELA, 1993, 35 (06): : 1536 - 1543
  • [48] Scanning Electrochemical Microscopy for the In Situ Characterization of Solid-Electrolyte Interphases: Highly Oriented Pyrolytic Graphite versus Graphite Composite
    Buelter, Heinz
    Peters, Fabian
    Wittstock, Gunther
    ENERGY TECHNOLOGY, 2016, 4 (12) : 1486 - 1494
  • [49] Clean Solid-Electrolyte/Electrode Interfaces Double the Capacity of Solid-State Lithium Batteries
    Kawasoko, Hideyuki
    Shirasawa, Tetsuroh
    Nishio, Kazunori
    Shimizu, Ryota
    Shiraki, Susumu
    Hitosugi, Taro
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (04) : 5861 - 5865
  • [50] CONDUCTIVITY OF PBSNF(4) SOLID-ELECTROLYTE
    VAKULENKO, AM
    UKSHE, EA
    SOVIET ELECTROCHEMISTRY, 1992, 28 (09): : 1025 - 1031