Electrical Double Layers Modulate the Growth of Solid-Electrolyte Interphases

被引:3
|
作者
Kim, Jaehyeon [1 ,2 ]
Zhao, Fujia [1 ,2 ]
Bonagiri, Lalith Krishna Samanth [2 ,3 ]
Ai, Qian [1 ,2 ]
Zhang, Yingjie [1 ,2 ,4 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
ATOMIC-FORCE MICROSCOPY; SOLVATION SHEATH STRUCTURE; OXYGEN REDUCTION REACTION; IN-SITU; ELECTROCHEMICAL STABILITY; HYDRATION STRUCTURES; ETHYLENE-CARBONATE; IONIC LIQUIDS; SEI FORMATION; SPECTROSCOPY;
D O I
10.1021/acs.chemmater.4c01745
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-electrolyte interphases (SEIs), oftentimes viewed as the most important yet least understood part of alkali-ion and alkali metal batteries, remain a key bottleneck for battery design. Despite extensive research in the past few decades, to date we have only begun to unravel the structure of SEIs, while their dynamic nucleation and growth mechanism is still elusive. Here we discuss the existing progress in characterizing SEIs in the battery community and propose that SEI growth depends critically on the electrical double layer (EDL) structure, a factor that has been largely hidden or ignored to date. We will further discuss methods for simultaneously characterizing EDL and SEIs, with a particular focus on emerging electrochemical 3D atomic force microscopy (EC-3D-AFM) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) techniques. In the end, we will propose strategies for predictive design of electrolytes to enable controlled EDL and SEI structures and achieve the desired battery performance.
引用
收藏
页码:9156 / 9166
页数:11
相关论文
共 50 条
  • [21] SOLID-ELECTROLYTE SENSORS
    WORRELL, WL
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1984, 131 (08) : C322 - C322
  • [22] SOLID-ELECTROLYTE TUNNELLING
    ULSTRUP, J
    SURFACE SCIENCE, 1980, 101 (1-3) : 564 - 582
  • [23] Identifying the Mechanism of Continued Growth of the Solid-Electrolyte Interphase
    Single, Fabian
    Latz, Arnulf
    Horstmann, Birger
    CHEMSUSCHEM, 2018, 11 (12) : 1950 - 1955
  • [24] TRANSPORT-PROPERTIES OF SOLID-ELECTROLYTE LAYERS IN LITHIUM IODINE BATTERIES
    NIMON, ES
    SHIROKOV, AV
    KOVYNEV, NP
    LVOV, AL
    PRIDATKO, IA
    JOURNAL OF POWER SOURCES, 1995, 55 (02) : 177 - 182
  • [25] Transfer mechanism in solid-electrolyte layers on lithium: influence of temperature and polarization
    Churikov, AV
    ELECTROCHIMICA ACTA, 2001, 46 (15) : 2415 - 2426
  • [26] Role of Surface Oxides in the Formation of Solid-Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries
    Schroder, Kjell W.
    Dylla, Anthony G.
    Harris, Stephen J.
    Webb, Lauren J.
    Stevenson, Keith J.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (23) : 21510 - 21524
  • [27] MgF2 Interface Engineering Promotes the Growth and Stability of LiF-Rich Solid-Electrolyte Interphases on Si-C
    Liu, Peng
    Xiao, Yupeng
    You, Jiyuan
    Zhang, Bo
    Li, Tianle
    Gao, Xiaotong
    Li, Yuqian
    Wang, Wenju
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (43) : 59488 - 59496
  • [28] Resolving Nanoscopic and Mesoscopic Heterogeneity of Fluorinated Species in Battery Solid-Electrolyte Interphases by Cryogenic Electron Microscopy
    Huang, William
    Wang, Hansen
    Boyle, David T.
    Li, Yuzhang
    Cui, Yi
    ACS ENERGY LETTERS, 2020, 5 (04): : 1128 - 1135
  • [29] Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries
    Tu, Zhengyuan
    Choudhury, Snehashis
    Zachman, Michael J.
    Wei, Shuya
    Zhang, Kaihang
    Kourkoutis, Lena F.
    Archer, Lynden A.
    JOULE, 2017, 1 (02) : 394 - 406
  • [30] Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries
    Archer, Lynden
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256