Tchebycheff Fractal Decomposition Algorithm for Bi-objective Optimization Problems

被引:0
|
作者
Aslimani, N. [1 ]
Talbi, E-G [1 ]
Ellaia, R. [2 ]
机构
[1] Univ Lille, Lille, France
[2] Mohammed V Univ Rabat, LERMA EMI, Rabat, Morocco
来源
METAHEURISTICS, MIC 2022 | 2023年 / 13838卷
关键词
Bi-objective optimization; Fractal decomposition; Tchebycheff scalarization; Adaptive reference points; EVOLUTIONARY ALGORITHM; WEIGHT DESIGN; MOEA/D;
D O I
10.1007/978-3-031-26504-4_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In most of the existing multi-objective metaheuristics based on decomposition, the reference points and the subspaces are statically defined. In this paper, a new adaptive strategy based on Tchebycheff fractals is proposed. A fractal decomposition of the objective space based on Tchebycheff functions, and adaptive strategies for updating the reference points are performed. The proposed algorithm outperforms popular multi-objective evolutionary algorithms both in terms of the quality of the obtained Pareto fronts (convergence, cardinality, diversity) and the search time.
引用
收藏
页码:246 / 259
页数:14
相关论文
共 50 条
  • [31] A bi-objective constrained optimization algorithm using a hybrid evolutionary and penalty function approach
    Deb, Kalyanmoy
    Datta, Rituparna
    ENGINEERING OPTIMIZATION, 2013, 45 (05) : 503 - 527
  • [32] An novel evolutionary algorithm for bi-objective Symmetric traveling salesman problem
    Jia Liping
    Zou Guocheng
    Zou Jin
    PROCEEDINGS OF THE 2008 7TH IEEE INTERNATIONAL CONFERENCE ON CYBERNETIC INTELLIGENT SYSTEMS, 2008, : 176 - 179
  • [33] Hybrid bi-objective portfolio optimization with pre-selection strategy
    Qi, Rongbin
    Yen, Gary G.
    INFORMATION SCIENCES, 2017, 417 : 401 - 419
  • [34] Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting
    Sharma D.
    Barakat N.
    Journal of The Institution of Engineers (India): Series C, 2019, 100 (02) : 295 - 310
  • [35] Bi-objective optimization of biochemical systems by linear programming
    Xu, Gongxian
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7562 - 7572
  • [36] Bi-objective optimization of a water network via benchmarking
    Tokos, Hella
    Pintaric, Zorka Novak
    Yang, Yongrong
    JOURNAL OF CLEANER PRODUCTION, 2013, 39 : 168 - 179
  • [37] Bi-objective optimization of maintenance scheduling for power systems
    Hadjaissa, B.
    Ameur, K.
    Cheikh, S. M. Ait
    Essounbouli, N.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 85 (5-8) : 1361 - 1372
  • [38] Bi-objective optimization of maintenance scheduling for power systems
    B. Hadjaissa
    K. Ameur
    S. M. Ait cheikh
    N. Essounbouli
    The International Journal of Advanced Manufacturing Technology, 2016, 85 : 1361 - 1372
  • [39] Bi-Objective Optimization for Indonesian Container Terminal Planning
    Rhomadona, Rizka
    Komarudin
    Hidayatno, Akhmad
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2017, : 164 - 168
  • [40] Bi-objective optimization design of functionally gradient materials
    Huang, JH
    Fadel, GM
    Blouin, VY
    Grujicic, M
    MATERIALS & DESIGN, 2002, 23 (07) : 657 - 666