Tchebycheff Fractal Decomposition Algorithm for Bi-objective Optimization Problems

被引:0
|
作者
Aslimani, N. [1 ]
Talbi, E-G [1 ]
Ellaia, R. [2 ]
机构
[1] Univ Lille, Lille, France
[2] Mohammed V Univ Rabat, LERMA EMI, Rabat, Morocco
来源
METAHEURISTICS, MIC 2022 | 2023年 / 13838卷
关键词
Bi-objective optimization; Fractal decomposition; Tchebycheff scalarization; Adaptive reference points; EVOLUTIONARY ALGORITHM; WEIGHT DESIGN; MOEA/D;
D O I
10.1007/978-3-031-26504-4_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In most of the existing multi-objective metaheuristics based on decomposition, the reference points and the subspaces are statically defined. In this paper, a new adaptive strategy based on Tchebycheff fractals is proposed. A fractal decomposition of the objective space based on Tchebycheff functions, and adaptive strategies for updating the reference points are performed. The proposed algorithm outperforms popular multi-objective evolutionary algorithms both in terms of the quality of the obtained Pareto fronts (convergence, cardinality, diversity) and the search time.
引用
收藏
页码:246 / 259
页数:14
相关论文
共 50 条
  • [1] A Fast Evolutionary Algorithm for Dynamic Bi-objective Optimization Problems
    Liu, Min
    Zeng, Wenhua
    PROCEEDINGS OF 2012 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, VOLS I-VI, 2012, : 130 - 134
  • [2] Global Pareto Optimality of Cone Decomposition of Bi-objective Optimization
    Wu, Yu
    Wu, Bin
    Ying, Weiqin
    Xie, Yuehong
    He, Weipeng
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 309 - 314
  • [3] A bi-layer decomposition algorithm for many-objective optimization problems
    Zhao, Chunliang
    Zhou, Yuren
    Hao, Yuanyuan
    Zhang, Guangyu
    APPLIED INTELLIGENCE, 2022, 52 (13) : 15122 - 15142
  • [4] An Efficient Conical Area Evolutionary Algorithm for Bi-objective Optimization
    Ying, Weiqin
    Xu, Xing
    Feng, Yuxiang
    Wu, Yu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2012, E95A (08) : 1420 - 1425
  • [5] Multi-objective ant colony optimization based on decomposition for bi-objective traveling salesman problems
    Cheng, Jixang
    Zhang, Gexiang
    Li, Zhidan
    Li, Yuquan
    SOFT COMPUTING, 2012, 16 (04) : 597 - 614
  • [6] AN UNBIASED BI-OBJECTIVE OPTIMIZATION MODEL AND ALGORITHM FOR CONSTRAINED OPTIMIZATION
    Dong, Ning
    Wang, Yuping
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2014, 28 (08)
  • [7] Bi-objective Optimization: An Online Algorithm for Job Assignment
    Wang, Chien-Min
    Huang, Xiao-Wei
    Hsu, Chun-Chen
    ADVANCES IN GRID AND PERVASIVE COMPUTING, PROCEEDINGS, 2009, 5529 : 223 - 234
  • [8] Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm
    Deb, Kalyanmoy
    Saha, Amit
    EVOLUTIONARY COMPUTATION, 2012, 20 (01) : 27 - 62
  • [9] On efficiency of a single variable bi-objective optimization algorithm
    James M. Calvin
    Antanas Žilinskas
    Optimization Letters, 2020, 14 : 259 - 267
  • [10] On efficiency of a single variable bi-objective optimization algorithm
    Calvin, James M.
    Zilinskas, Antanas
    OPTIMIZATION LETTERS, 2020, 14 (01) : 259 - 267