H-assisted CO2 dissociation on PdnPt(4-n)/In2O3 catalysts: a density functional theory study

被引:0
|
作者
Wang, Xiaowen [1 ]
Pan, Jiaying [1 ]
Wei, Haiqiao [1 ,2 ]
Li, Wenjia [4 ]
Zhao, Jun [2 ,3 ]
Hu, Zhen [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300071, Peoples R China
[2] Tianjin Univ, Natl Ind Educ Platform Energy Storage, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Key Lab Efficient Utilizat Low & Medium Grade Ener, Tianjin 300071, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGENATION; PD; METHANOL; DFT; CONVERSION; NANOPARTICLES; ACTIVATION; ADSORPTION; REDUCTION; PROMOTION;
D O I
10.1039/d4cp02389g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation into valuable chemical compounds can effectively address the issues of greenhouse gas emissions and energy scarcity. The activation and dissociation processes of CO2 are crucial for its reduction reactions, but the effects of *H adatoms on the C-O cleavage are still confusing. This study investigates the H-assisted CO2 dissociation pathways on the PdnPt(4-n)/In2O3 (n = 0-4) catalysts via DFT calculation. Initially, the adsorption properties of *H-2, *COOH, and *HCOO species are calculated. Then, two H-assisted CO2 dissociation channels, i.e., *CO2 + *H -> *COOH -> *CO + *OH and *CO2 + *H -> *HCOO -> *CHO + *O, are studied. Results show that Pt and Pd promote the CO2 hydrogenation and C-O bond cleavage reactions, respectively. In comparison to CO2 direct dissociation, the COOH-mediated and HCOO-mediated channels facilitate and impede the C-O bond cleavage, respectively. Overall, the Pd3Pt/In2O3 constituent is suggested for the H-assisted CO2 dissociation reaction. The electronic effects of the PdnPt(4-n) bimetals adjust the stabilities of the intermediates and barriers of the elementary steps, and the interactions between PdnPt(4-n) and In2O3 provide extra sites for the adsorbates and reaction steps. This study reveals the effects of *H on the C-O bond dissociation processes and provides useful insight into designing PdPt/In2O3 catalysts for CO2 hydrogenation reactions.
引用
收藏
页码:23116 / 23124
页数:9
相关论文
共 50 条
  • [21] Effect of Halide Anions on the Electroreduction of CO2 to C2H4: A Density Functional Theory Study
    Ma, Xifei
    Xing, Lu
    Yao, Xiaoqian
    Zhang, Xiangping
    Liu, Lei
    CHEMPHYSCHEM, 2023, 24 (03)
  • [22] First-Principles Calculation of H/CO2 Interaction in Plasma: A Density Functional Theory-Based Study
    Wang Xue-Feng
    Shen Chong-Yu
    Wu Ji-Liang
    Ye Xiao-Qiu
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (08) : 1470 - 1476
  • [23] Efficient hydrogenation of CO2 to methanol over Pd/In2O3/SBA-15 catalysts
    Jiang, Haoxi
    Lin, Jing
    Wu, Xiaohui
    Wang, Wenyi
    Chen, Yifei
    Zhang, Minhua
    JOURNAL OF CO2 UTILIZATION, 2020, 36 : 33 - 39
  • [24] Reaction pathways and the role of the carbonates during CO2 hydrogenation over hexagonal In2O3 catalysts
    Qin, Bin
    Zhou, Zhimin
    Li, Shenggang
    APPLIED SURFACE SCIENCE, 2021, 542 (542)
  • [25] Adsorption of CO2 on sodium iodide (NaI)n (n ≤ 10) clusters: A density functional theory investigation
    Jafari-Chermahini, Mohammad Taqi
    Tavakol, Hossein
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2018, 1145 : 37 - 43
  • [26] Density functional theoretical study of the tungsten-doped In2O3 catalyst for CO2 hydrogenation to methanol
    Zou, Rui
    Sun, Kaihang
    Shen, Chenyang
    Liu, Chang-Jun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (41) : 25522 - 25529
  • [27] Bimetallic In2O3/Bi2O3 Catalysts Enable Highly Selective CO2 Electroreduction to Formate within Ultra-Broad Potential Windows
    Yang, Zhongxue
    Wang, Hongzhi
    Bi, Xinze
    Tan, Xiaojie
    Zhao, Yuezhu
    Wang, Wenhang
    Zou, Yecheng
    Wang, Huaiping
    Ning, Hui
    Wu, Mingbo
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (01)
  • [28] Effect of Metal-Support Interface During CH4 and H2 Dissociation on Ni/γ-Al2O3: A Density Functional Theory Study
    Li, Jingde
    Croiset, Eric
    Ricardez-Sandoval, Luis
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (33) : 16907 - 16920
  • [29] O2, CO2, and H2O Chemisorption on UN(001) Surface: Density Functional Theory Study
    Li, Ru-song
    He, Bin
    Wang, Fei
    Peng, Xu
    Wang, Hua
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2014, 27 (01) : 20 - 28
  • [30] Highly Active Ir/In2O3 Catalysts for Selective Hydrogenation of CO2 to Methanol: Experimental and Theoretical Studiese
    Shen, Chenyang
    Sun, Kaihang
    Zhang, Zhitao
    Rui, Ning
    Jia, Xinyu
    Mei, Donghai
    Liu, Chang-jun
    ACS CATALYSIS, 2021, 11 (07) : 4036 - 4046