H-assisted CO2 dissociation on PdnPt(4-n)/In2O3 catalysts: a density functional theory study

被引:0
|
作者
Wang, Xiaowen [1 ]
Pan, Jiaying [1 ]
Wei, Haiqiao [1 ,2 ]
Li, Wenjia [4 ]
Zhao, Jun [2 ,3 ]
Hu, Zhen [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, Tianjin 300071, Peoples R China
[2] Tianjin Univ, Natl Ind Educ Platform Energy Storage, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Key Lab Efficient Utilizat Low & Medium Grade Ener, Tianjin 300071, Peoples R China
[4] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGENATION; PD; METHANOL; DFT; CONVERSION; NANOPARTICLES; ACTIVATION; ADSORPTION; REDUCTION; PROMOTION;
D O I
10.1039/d4cp02389g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation into valuable chemical compounds can effectively address the issues of greenhouse gas emissions and energy scarcity. The activation and dissociation processes of CO2 are crucial for its reduction reactions, but the effects of *H adatoms on the C-O cleavage are still confusing. This study investigates the H-assisted CO2 dissociation pathways on the PdnPt(4-n)/In2O3 (n = 0-4) catalysts via DFT calculation. Initially, the adsorption properties of *H-2, *COOH, and *HCOO species are calculated. Then, two H-assisted CO2 dissociation channels, i.e., *CO2 + *H -> *COOH -> *CO + *OH and *CO2 + *H -> *HCOO -> *CHO + *O, are studied. Results show that Pt and Pd promote the CO2 hydrogenation and C-O bond cleavage reactions, respectively. In comparison to CO2 direct dissociation, the COOH-mediated and HCOO-mediated channels facilitate and impede the C-O bond cleavage, respectively. Overall, the Pd3Pt/In2O3 constituent is suggested for the H-assisted CO2 dissociation reaction. The electronic effects of the PdnPt(4-n) bimetals adjust the stabilities of the intermediates and barriers of the elementary steps, and the interactions between PdnPt(4-n) and In2O3 provide extra sites for the adsorbates and reaction steps. This study reveals the effects of *H on the C-O bond dissociation processes and provides useful insight into designing PdPt/In2O3 catalysts for CO2 hydrogenation reactions.
引用
收藏
页码:23116 / 23124
页数:9
相关论文
共 50 条
  • [1] CO2 activation and dissociation on In2O3(110) supported PdnPt(4-n) (n=0-4) catalysts: a density functional theory study
    Wang, Xiaowen
    Pan, Jiaying
    Wei, Haiqiao
    Li, Wenjia
    Zhao, Jun
    Hu, Zhen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (19) : 11557 - 11567
  • [2] Mechanism of Methanol Synthesis from CO2 Hydrogenation over Pt8/In2O3 Catalysts: A Combined Study on Density Functional Theory and Microkinetic Modeling
    Wang, Xiaowen
    Pan, Jiaying
    Wei, Haiqiao
    Li, Wenjia
    Zhao, Jun
    Hu, Zhen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (04) : 1761 - 1769
  • [3] Optimal design of PdAu/In2O3 catalysts for CO2 hydrogenation
    Xu, Xingtang
    Li, Yanwei
    Sun, Guang
    Cao, Jianliang
    Wang, Yan
    Xu, Wenjuan
    AIP ADVANCES, 2024, 14 (10)
  • [4] Facet effect of In2O3 for methanol synthesis by CO2 hydrogenation: A mechanistic and kinetic study
    Wang, Wenyi
    Chen, Yifei
    Zhang, Minhua
    SURFACES AND INTERFACES, 2021, 25
  • [5] Adsorption of H2O, H2, O2, CO, NO, and CO2 on graphene/g-C3N4 nanocomposite investigated by density functional theory
    Wu, Hong-Zhang
    Bandaru, Sateesh
    Liu, Jin
    Li, Li-Li
    Wang, Zhenling
    APPLIED SURFACE SCIENCE, 2018, 430 : 125 - 136
  • [6] Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol
    Tian, Guanfeng
    Wu, Youqing
    Wu, Shiyong
    Huang, Sheng
    Gao, Jinsheng
    CATALYSIS LETTERS, 2023, 153 (03) : 903 - 910
  • [7] CO2 dissociation over PtxNi4_x bimetallic clusters with and without hydrogen sources: A density functional theory study
    Niu, Juntian
    Ran, Jingyu
    Ou, Zhiliang
    Du, Xuesen
    Wang, Ruirui
    Qi, Wenjie
    Zhang, Peng
    JOURNAL OF CO2 UTILIZATION, 2016, 16 : 431 - 441
  • [8] Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol
    Shen C.
    Sun K.
    Zhang Y.
    Liu C.
    Huagong Xuebao/CIESC Journal, 2023, 74 (01): : 145 - 156
  • [9] Theoretical study of methanol synthesis from CO2 and CO hydrogenation on the surface of ZrO2 supported In2O3 catalyst
    Dou, Maobin
    Zhang, Minhua
    Chen, Yifei
    Yu, Yingzhe
    SURFACE SCIENCE, 2018, 672 : 7 - 12
  • [10] Density functional theory study on the interaction of CO2 with Fe3O4(111) surface
    Su, Tongming
    Qin, Zuzeng
    Huang, Guan
    Ji, Hongbing
    Jiang, Yuexiu
    Chen, Jianhua
    APPLIED SURFACE SCIENCE, 2016, 378 : 270 - 276