Modeling the Dynamics of Tuberculosis with Vaccination, Treatment, and Environmental Impact: Fractional Order Modeling

被引:0
作者
Khan, Muhammad Altaf [1 ]
DarAssi, Mahmoud H. [2 ]
Ahmad, Irfan [3 ]
Seyam, Noha Mohammad [4 ]
Alzahrani, Ebraheem [5 ]
机构
[1] Univ Free State, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa
[2] Princess Sumaya Univ Technol, Dept Basic Sci, Amman 11941, Jordan
[3] King Khalid Univ, Coll Appl Med Sci, Dept Clin Lab Sci, Abha 62529, Saudi Arabia
[4] Umm Al Qura Univ, Coll Appl Sci, Math Sci Dept, Mecca 24381, Saudi Arabia
[5] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2024年 / 141卷 / 02期
关键词
Tuberculosis; real data; stability analysis; parameter estimations; discussion; SENSITIVITY-ANALYSIS; MATHEMATICAL-MODEL; TRANSMISSION; VACCINES;
D O I
10.32604/cmes.2024.053681
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A mathematical model is designed to investigate Tuberculosis (TB) disease under the vaccination, treatment, and environmental impact with real cases. First, we introduce the model formulation in non-integer order derivative and then, extend the model into fractional order derivative. The fractional system's existence, uniqueness, and other relevant properties are shown. Then, we study the stability analysis of the equilibrium points. The diseasefree equilibrium (DFE) D0 is locally asymptotically stable (LAS) when (v) pound < 1. Further, we show the global asymptotical stability (GAS) of the endemic equilibrium (EE) D & lowast; for (v)> pound 1 and D0 for (v) pound <= 1. The existence of bifurcation analysis in the model is investigated, and it is shown the system possesses the forward bifurcation phenomenon. Sensitivity analysis has been performed to determine the sensitive parameters that impact v pound. We consider the real TB statistics from Khyber Pakhtunkhwa in Pakistan and parameterized the model. The computed basic reproduction number obtained using the real cases is (0) pound approximate to 3.6615. Various numerical results regarding disease elimination of the sensitive parameters are shown graphically.
引用
收藏
页码:1365 / 1394
页数:30
相关论文
共 56 条
  • [21] Modeling and Analysis of Fractional Order Logistic Equation Incorporating Additive Allee Effect
    Kalra, Preety
    Malhotra, Nisha
    [J]. CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 380 - 401
  • [22] Kang Tao-Li, 2024, Math Biosci Eng, V21, P5308, DOI 10.3934/mbe.2024234
  • [23] A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Farooq, Muhammad
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 227 - 238
  • [24] Turbulence of tropical cyclone 'Fani' in the Bay of Bengal and Indian subcontinent
    Kumar, Shubham
    Lal, Preet
    Kumar, Amit
    [J]. NATURAL HAZARDS, 2020, 103 (01) : 1613 - 1622
  • [25] Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge
    Li, Hong-Li
    Zhang, Long
    Hu, Cheng
    Jiang, Yao-Lin
    Teng, Zhidong
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 435 - 449
  • [26] Modeling and optimal control of mutated COVID-19 (Delta strain) with imperfect vaccination
    Li, Tingting
    Guo, Youming
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 156
  • [27] Global analysis of tuberculosis dynamical model and optimal control strategies based on case data in the United States
    Li, Yong
    Liu, Xianning
    Yuan, Yiyi
    Li, Jiang
    Wang, Lianwen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 422
  • [28] Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability
    Majee, Suvankar
    Jana, Soovoojeet
    Das, Dhiraj Kumar
    Kar, T. K.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 161
  • [29] Mathematical Modelling of HIV/AIDS Treatment Using Caputo-Fabrizio Fractional Differential Systems
    Manikandan, S.
    Gunasekar, T.
    Kouidere, A.
    Venkatesan, K. A.
    Shah, Kamal
    Abdeljawad, Thabet
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [30] A methodology for performing global uncertainty and sensitivity analysis in systems biology
    Marino, Simeone
    Hogue, Ian B.
    Ray, Christian J.
    Kirschner, Denise E.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2008, 254 (01) : 178 - 196