Modeling the Dynamics of Tuberculosis with Vaccination, Treatment, and Environmental Impact: Fractional Order Modeling

被引:0
作者
Khan, Muhammad Altaf [1 ]
DarAssi, Mahmoud H. [2 ]
Ahmad, Irfan [3 ]
Seyam, Noha Mohammad [4 ]
Alzahrani, Ebraheem [5 ]
机构
[1] Univ Free State, Fac Nat & Agr Sci, ZA-9300 Bloemfontein, South Africa
[2] Princess Sumaya Univ Technol, Dept Basic Sci, Amman 11941, Jordan
[3] King Khalid Univ, Coll Appl Med Sci, Dept Clin Lab Sci, Abha 62529, Saudi Arabia
[4] Umm Al Qura Univ, Coll Appl Sci, Math Sci Dept, Mecca 24381, Saudi Arabia
[5] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2024年 / 141卷 / 02期
关键词
Tuberculosis; real data; stability analysis; parameter estimations; discussion; SENSITIVITY-ANALYSIS; MATHEMATICAL-MODEL; TRANSMISSION; VACCINES;
D O I
10.32604/cmes.2024.053681
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A mathematical model is designed to investigate Tuberculosis (TB) disease under the vaccination, treatment, and environmental impact with real cases. First, we introduce the model formulation in non-integer order derivative and then, extend the model into fractional order derivative. The fractional system's existence, uniqueness, and other relevant properties are shown. Then, we study the stability analysis of the equilibrium points. The diseasefree equilibrium (DFE) D0 is locally asymptotically stable (LAS) when (v) pound < 1. Further, we show the global asymptotical stability (GAS) of the endemic equilibrium (EE) D & lowast; for (v)> pound 1 and D0 for (v) pound <= 1. The existence of bifurcation analysis in the model is investigated, and it is shown the system possesses the forward bifurcation phenomenon. Sensitivity analysis has been performed to determine the sensitive parameters that impact v pound. We consider the real TB statistics from Khyber Pakhtunkhwa in Pakistan and parameterized the model. The computed basic reproduction number obtained using the real cases is (0) pound approximate to 3.6615. Various numerical results regarding disease elimination of the sensitive parameters are shown graphically.
引用
收藏
页码:1365 / 1394
页数:30
相关论文
共 56 条
  • [1] Mathematical modeling of HIV transmission in a heterosexual population: incorporating memory conservation
    Alla Hamou, A.
    Azroul, E.
    Bouda, S.
    Guedda, M.
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (01) : 393 - 416
  • [2] Almeida R., 2019, Int. J. Dynam. Control, V7, P776, DOI [10.1007/s40435-018-0492-1, DOI 10.1007/S40435-018-0492-1]
  • [3] [Anonymous], 2016, Who country cooperation strategic
  • [4] [Anonymous], 2023, TUBERCULOSIS
  • [5] Modelling the effects of pre-exposure and post-exposure vaccines in tuberculosis control
    Bhunu, C. P.
    Garira, W.
    Mukandavire, Z.
    Magombedze, G.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2008, 254 (03) : 633 - 649
  • [6] Modeling HIV/AIDS and Tuberculosis Coinfection
    Bhunu, C. P.
    Garira, W.
    Mukandavire, Z.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2009, 71 (07) : 1745 - 1780
  • [7] Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality
    Bowong, Samuel
    Kurths, Jurgen
    [J]. NONLINEAR DYNAMICS, 2012, 67 (03) : 2027 - 2051
  • [8] Modelling the effects of the contaminated environments on tuberculosis in Jiangsu, China
    Cai, Yongli
    Zhao, Shi
    Niu, Yun
    Peng, Zhihang
    Wang, Kai
    He, Daihai
    Wang, Weiming
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2021, 508
  • [9] Dynamical models of tuberculosis and their applications
    Castillo-Chavez, C
    Song, BJ
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2004, 1 (02) : 361 - 404
  • [10] Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model
    Chitnis, Nakul
    Hyman, James M.
    Cushing, Jim M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) : 1272 - 1296