Solving Edge-Weighted Maximum Clique Problem with DCA Warm-Start Quantum Approximate Optimization Algorithm

被引:0
作者
Huy Phuc Nguyen Ha [1 ]
Viet Hung Nguyen [2 ]
Anh Son Ta [1 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Dai Co Viet, Vietnam
[2] Univ Clermont Auvergne, LIMOS, Clermont Auvergne INP, CNRS,Mines St Etienne, Clermont Ferrand, France
来源
METAHEURISTICS, MIC 2024, PT I | 2024年 / 14753卷
关键词
Maximum edge-weighted clique; QAOA; warm-start; DCA;
D O I
10.1007/978-3-031-62912-9_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Quantum Approximate Optimization Algorithm is a hybrid quantum-classic algorithm used for solving combinatorial optimization. However, this algorithm performs poorly when solving the constrained combinatorial optimization problem. To deal with this issue, we consider the warm-start Quantum Approximate Optimization Algorithm for solving constrained problems. This article presents a new method for improving the performance of the Quantum Approximate Optimization Algorithm, with the Difference of Convex Optimization. Our approach focuses on the warm-start version of the algorithm and uses the Difference of Convex optimization to find the warm-start parameters. To show our method's efficiency, we do several experiments on the edge-weighted maximum clique problem and see a good result.
引用
收藏
页码:246 / 261
页数:16
相关论文
共 29 条
  • [1] Genetic algorithms as classical optimizer for the Quantum Approximate Optimization Algorithm
    Acampora, Giovanni
    Chiatto, Angela
    Vitiello, Autilia
    [J]. APPLIED SOFT COMPUTING, 2023, 142
  • [2] The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
    An, LTH
    Tao, PD
    [J]. ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) : 23 - 46
  • [3] A branch and bound method via dc optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems
    An, LTH
    Tao, PD
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (02) : 171 - 206
  • [4] SOLVING PARTITIONING-HUB LOCATION-ROUTING PROBLEM USING DCA
    Anh Son Ta
    Hoai An Le Thi
    Khadraoui, Djamel
    Tao Pham Dinh
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2012, 8 (01) : 87 - 102
  • [5] Anshu A, 2023, QUANTUM-AUSTRIA, V7
  • [6] Improving Variational Quantum Optimization using CVaR
    Barkoutsos, Panagiotis Kl.
    Nannicini, Giacomo
    Robert, Anton
    Tavernelli, Ivano
    Woerner, Stefan
    [J]. QUANTUM, 2020, 4
  • [7] Training Variational Quantum Algorithms Is NP-Hard
    Bittel, Lennart
    Kliesch, Martin
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (12)
  • [8] Benchmarking the performance of portfolio optimization with QAOA
    Brandhofer, Sebastian
    Braun, Daniel
    Dehn, Vanessa
    Hellstern, Gerhard
    Huels, Matthias
    Ji, Yanjun
    Polian, Ilia
    Bhatia, Amandeep Singh
    Wellens, Thomas
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 22 (01)
  • [9] AN EXACT ALGORITHM FOR NONCONVEX QUADRATIC INTEGER MINIMIZATION USING ELLIPSOIDAL RELAXATIONS
    Buchheim, C.
    De Santis, M.
    Palagi, L.
    Piacentini, M.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) : 1867 - 1889
  • [10] Quantum Approximation for Wireless Scheduling
    Choi, Jaeho
    Oh, Seunghyeok
    Kim, Joongheon
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 11