Solving Edge-Weighted Maximum Clique Problem with DCA Warm-Start Quantum Approximate Optimization Algorithm
被引:0
作者:
Huy Phuc Nguyen Ha
论文数: 0引用数: 0
h-index: 0
机构:
Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Dai Co Viet, VietnamHanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Dai Co Viet, Vietnam
Huy Phuc Nguyen Ha
[1
]
Viet Hung Nguyen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Clermont Auvergne, LIMOS, Clermont Auvergne INP, CNRS,Mines St Etienne, Clermont Ferrand, FranceHanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Dai Co Viet, Vietnam
Viet Hung Nguyen
[2
]
论文数: 引用数:
h-index:
机构:
Anh Son Ta
[1
]
机构:
[1] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Dai Co Viet, Vietnam
[2] Univ Clermont Auvergne, LIMOS, Clermont Auvergne INP, CNRS,Mines St Etienne, Clermont Ferrand, France
来源:
METAHEURISTICS, MIC 2024, PT I
|
2024年
/
14753卷
关键词:
Maximum edge-weighted clique;
QAOA;
warm-start;
DCA;
D O I:
10.1007/978-3-031-62912-9_24
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The Quantum Approximate Optimization Algorithm is a hybrid quantum-classic algorithm used for solving combinatorial optimization. However, this algorithm performs poorly when solving the constrained combinatorial optimization problem. To deal with this issue, we consider the warm-start Quantum Approximate Optimization Algorithm for solving constrained problems. This article presents a new method for improving the performance of the Quantum Approximate Optimization Algorithm, with the Difference of Convex Optimization. Our approach focuses on the warm-start version of the algorithm and uses the Difference of Convex optimization to find the warm-start parameters. To show our method's efficiency, we do several experiments on the edge-weighted maximum clique problem and see a good result.