Unsupervised machine learning to identify subphenotypes among cardiac intensive care unit patients with heart failure

被引:0
作者
Jentzer, Jacob C. [1 ,2 ]
Reddy, Yogesh N., V [1 ]
Soussi, Sabri [3 ,4 ]
Crespo-Diaz, Ruben [1 ]
Patel, Parag C. [5 ]
Lawler, Patrick R. [6 ]
Mebazaa, Alexandre [4 ,7 ]
Dunlay, Shannon M. [1 ,2 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, 200 First St SW, Rochester, MN 55905 USA
[2] Mayo Clin, Robert D & Patricia E Kern Ctr Sci Hlth Care Deliv, Rochester, MN USA
[3] Univ Toronto, Toronto Western Hosp, Univ Hlth Network UHN, Dept Anesthesia & Pain Management, Toronto, ON, Canada
[4] Univ Paris, Cardiovasc Markers Stress Condit MASCOT, Inserm UMR S 942, Paris, France
[5] Mayo Clin Florida, Dept Cardiovasc Med, Jacksonville, FL USA
[6] McGill Univ, Hlth Ctr, Dept Med, Montreal, PQ, Canada
[7] Univ Paris Cite, APHP, FHU, PROMICE, Paris, France
关键词
cardiac intensive care unit; cardiogenic shock; heart failure; machine learning; mortality; phenotyping; RISK PREDICTION; PHENOTYPES; MORTALITY;
D O I
10.1002/ehf2.15027
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Hospitalized patients with heart failure (HF) are a heterogeneous population, with multiple phenotypes proposed. Prior studies have not examined the biological phenotypes of critically ill patients with HF admitted to the contemporary cardiac intensive care unit (CICU). We aimed to leverage unsupervised machine learning to identify previously unknown HF phenotypes in a large and diverse cohort of patients with HF admitted to the CICU. Methods We screened 6008 Mayo Clinic CICU patients with an admission diagnosis of HF from 2007 to 2018 and included those without missing values for common laboratory tests. Consensus k-means clustering was performed based on 10 common admission laboratory values (potassium, chloride, anion gap, blood urea nitrogen, haemoglobin, red blood cell distribution width, mean corpuscular volume, platelet count, white blood cell count and neutrophil-to-lymphocyte ratio). In-hospital mortality was evaluated using logistic regression, and 1 year mortality was evaluated using Cox proportional hazard models after multivariable adjustment. Results Among 4877 CICU patients with HF who had complete admission laboratory data (mean age 69.4 years, 38.4% females), we identified five clusters with divergent demographics, comorbidities, laboratory values, admission diagnoses and use of critical care therapies. We labelled these clusters based on the characteristic laboratory profile of each group: uncomplicated (25.7%), iron-deficient (14.5%), cardiorenal (18.4%), inflamed (22.3%) and hypoperfused (19.2%). In-hospital mortality occurred in 10.7% and differed between the phenotypes: uncomplicated, 2.7% (reference); iron-deficient, 8.1% [adjusted odds ratio (OR) 2.18 (1.38-3.48), P < 0.001]; cardiorenal, 10.3% [adjusted OR 2.11 (1.37-3.32), P < 0.001]; inflamed, 12.5% [adjusted OR 1.79 (1.18-2.76), P = 0.007]; and hypoperfused, 21.9% [adjusted OR 4.32 (2.89-6.62), P < 0.001]. These differences in mortality between phenotypes were consistent when patients were stratified based on demographics, aetiology, admission diagnoses, mortality risk scores, shock severity and systolic function. One-year mortality occurred in 31.5% and differed between the phenotypes: uncomplicated, 11.9% (reference); inflamed, 26.8% [adjusted hazard ratio (HR) 1.56 (1.27-1.92), P < 0.001]; iron-deficient, 33.8% [adjusted HR 2.47 (2.00-3.04), P < 0.001]; cardiorenal, 41.2% [adjusted HR 2.41 (1.97-2.95), P < 0.001]; and hypoperfused, 52.3% [adjusted HR 3.43 (2.82-4.18), P < 0.001]. Similar findings were observed for post-discharge 1 year mortality. Conclusions Unsupervised machine learning clustering can identify multiple distinct clinical HF phenotypes within the CICU population that display differing mortality profiles both in-hospital and at 1 year. Mortality was lowest for the uncomplicated HF phenotype and highest for the hypoperfused phenotype. The inflamed phenotype had comparatively higher in-hospital mortality yet lower post-discharge mortality, suggesting divergent short-term and long-term prognosis.
引用
收藏
页码:4242 / 4256
页数:15
相关论文
共 33 条
[1]   Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients [J].
Ahmad, Tariq ;
Lund, Lars H. ;
Rao, Pooja ;
Ghosh, Rohit ;
Warier, Prashant ;
Vaccaro, Benjamin ;
Dahlstrom, Ulf ;
O'Connor, Christopher M. ;
Felker, G. Michael ;
Desai, Nihar R. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (08)
[2]   Clinical Implications of Chronic Heart Failure Phenotypes Defined by Cluster Analysis [J].
Ahmad, Tariq ;
Pencina, Michael J. ;
Schulte, Phillip J. ;
O'Brien, Emily ;
Whellan, David J. ;
Pina, Ileana L. ;
Kitzman, Dalane W. ;
Lee, Kerry L. ;
O'Connor, Christopher M. ;
Felker, G. Michael .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 64 (17) :1765-1774
[3]   Severity of illness assessment with application of the APACHE IV predicted mortality and outcome trends analysis in an academic cardiac intensive care unit [J].
Bennett, Courtney E. ;
Wright, R. Scott ;
Jentzer, Jacob ;
Gajic, Ognjen ;
Murphree, Dennis H. ;
Murphy, Joseph G. ;
Mankad, Sunil V. ;
Wiley, Brandon M. ;
Bell, Malcolm R. ;
Barsness, Gregory W. .
JOURNAL OF CRITICAL CARE, 2019, 50 :242-246
[4]   Demographics, Care Patterns, and Outcomes of Patients Admitted to Cardiac Intensive Care Units: The Critical Care Cardiology Trials Network Prospective North American Multicenter Registry of Cardiac Critical Illness [J].
Bohula, Erin A. ;
Katz, Jason N. ;
van Diepen, Sean ;
Alviar, Carlos L. ;
Baird-Zars, Vivian M. ;
Park, Jeong-Gun ;
Barnett, Christopher F. ;
Bhattal, Gurjaspreet ;
Barsness, Gregory W. ;
Burke, James A. ;
Cremer, Paul C. ;
Cruz, Jennifer ;
Daniels, Lori B. ;
DeFilippis, Andrew ;
Granger, Christopher B. ;
Hollenberg, Steven ;
Horowitz, James M. ;
Keller, Norma ;
Kontos, Michael C. ;
Lawler, Patrick R. ;
Menon, Venu ;
Metkus, Thomas S. ;
Ng, Jason ;
Orgel, Ryan ;
Overgaard, Christopher B. ;
Phreaner, Nicholas ;
Roswell, Robert O. ;
Schulman, Steven P. ;
Snell, R. Jeffrey ;
Solomon, Michael A. ;
Ternus, Bradley ;
Tymchak, Wayne ;
Vikram, Fnu ;
Morrow, David A. ;
Morrow, David A. ;
Katz, Jason N. ;
van Diepen, Sean ;
Solomon, Michael A. ;
Bohula, Erin A. ;
Baird-Zars, Vivian ;
Cange, Abby ;
Murphy, Sabina A. ;
Silva, D. ;
Schenone, Aldo ;
Rutkowski, K. ;
Ricketti, Daniel ;
Trujillo, John ;
Ibrahim, Khalil ;
Rahman, Faisal ;
Cornell, Kristen .
JAMA CARDIOLOGY, 2019, 4 (09) :928-935
[5]   Abnormal serum chloride is associated with increased mortality among unselected cardiac intensive care unit patients [J].
Breen, Thomas J. ;
Brueske, Benjamin ;
Sidhu, Mandeep S. ;
Kashani, Kianoush B. ;
Anavekar, Nandan S. ;
Barsness, Gregory W. ;
Jentzer, Jacob C. .
PLOS ONE, 2021, 16 (04)
[6]   Hyperkalemia Is Associated With Increased Mortality Among Unselected Cardiac Intensive Care Unit Patients [J].
Brueske, Benjamin ;
Sidhu, Mandeep S. ;
Schulman-Marcus, Joshua ;
Kashani, Kianoush B. ;
Barsness, Gregory W. ;
Jentzer, Jacob C. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2019, 8 (07)
[7]   Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC Heart Failure Long-Term Registry [J].
Chioncel, Ovidiu ;
Mebazaa, Alexandre ;
Harjola, Veli-Pekka ;
Coats, Andrew J. ;
Piepoli, Massimo Francesco ;
Crespo-Leiro, Maria G. ;
Laroche, Cecile ;
Seferovic, Petar M. ;
Anker, Stefan D. ;
Ferrari, Roberto ;
Ruschitzka, Frank ;
Lopez-Fernandez, Silvia ;
Miani, Daniela ;
Filippatos, Gerasimos ;
Maggioni, Aldo P. .
EUROPEAN JOURNAL OF HEART FAILURE, 2017, 19 (10) :1242-1254
[8]   Phenotypes of heart failure with preserved ejection fraction and effect of spironolactone treatment [J].
Choy, Manting ;
Liang, Weihao ;
He, Jiangui ;
Fu, Michael ;
Dong, Yugang ;
He, Xin ;
Liu, Chen .
ESC HEART FAILURE, 2022, 9 (04) :2567-2575
[9]  
Cleland JG, 2016, Circ Hear Fail, P9
[10]   Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction Detailed Phenotypes, Prognosis, and Response to Spironolactone [J].
Cohen, Jordana B. ;
Schrauben, Sarah J. ;
Zhao, Lei ;
Basso, Michael D. ;
Cvijic, Mary Ellen ;
Li, Zhuyin ;
Yarde, Melissa ;
Wang, Zhaoqing ;
Bhattacharya, Priyanka T. ;
Chirinos, Diana A. ;
Prenner, Stuart ;
Zamani, Payman ;
Seiffert, Dietmar A. ;
Car, Bruce D. ;
Gordon, David A. ;
Margulies, Kenneth ;
Cappola, Thomas ;
Chirinos, Julio A. .
JACC-HEART FAILURE, 2020, 8 (03) :172-184