A Lightweight Rice Pest Detection Algorithm Using Improved Attention Mechanism and YOLOv8

被引:2
作者
Yin, Jianjun [1 ,2 ]
Huang, Pengfei [1 ,2 ]
Xiao, Deqin [1 ,2 ]
Zhang, Bin [1 ,2 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Smart Agr Technol Trop South China, Guangzhou 510642, Peoples R China
来源
AGRICULTURE-BASEL | 2024年 / 14卷 / 07期
关键词
pest detection; YOLOv8; attention mechanism; loss metric; lightweight model;
D O I
10.3390/agriculture14071052
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Intelligent pest detection algorithms are capable of effectively detecting and recognizing agricultural pests, providing important recommendations for field pest control. However, existing recognition models have shortcomings such as poor accuracy or a large number of parameters. Therefore, this study proposes a lightweight and accurate rice pest detection algorithm based on improved YOLOv8. Firstly, a Multi-branch Convolutional Block Attention Module (M-CBAM) is constructed in the YOLOv8 network to enhance the feature extraction capability for pest targets, yielding better detection results. Secondly, the Minimum Points Distance Intersection over Union (MPDIoU) is introduced as a bounding box loss metric, enabling faster model convergence and improved detection results. Lastly, lightweight Ghost convolutional modules are utilized to significantly reduce model parameters while maintaining optimal detection performance. The experimental results demonstrate that the proposed method outperforms other detection models, with improvements observed in all evaluation metrics compared to the baseline model. On the test set, this method achieves a detection average precision of 95.8% and an F1-score of 94.6%, with a model parameter of 2.15 M, meeting the requirements of both accuracy and lightweightness. The efficacy of this approach is validated by the experimental findings, which provide specific solutions and technical references for intelligent pest detection.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A lightweight YOLOv8 based on attention mechanism for mango pest and disease detection
    Wang, Jiao
    Wang, Junping
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (04)
  • [2] Lightweight YOLOv8 for Wheat Head Detection
    Fang, Chen
    Yang, Xiang
    IEEE ACCESS, 2024, 12 : 66214 - 66222
  • [3] Improved YOLOv8 garment sewing defect detection method based on attention mechanism
    Xu, Zengbo
    Bao, Yuchen
    Tian, Bingqiang
    JOURNAL OF MEASUREMENTS IN ENGINEERING, 2024, 12 (04) : 706 - 721
  • [4] Lightweight Insulator and Defect Detection Method Based on Improved YOLOv8
    Liu, Yanxing
    Li, Xudong
    Qiao, Ruyu
    Chen, Yu
    Han, Xueliang
    Paul, Agyemang
    Wu, Zhefu
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [5] A Lightweight underwater detector enhanced by Attention mechanism, GSConv and WIoU on YOLOv8
    Cai, Shaobin
    Zhang, Xiangkui
    Mo, Yuchang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Attention-Based Lightweight YOLOv8 Underwater Target Recognition Algorithm
    Cheng, Shun
    Wang, Zhiqian
    Liu, Shaojin
    Han, Yan
    Sun, Pengtao
    Li, Jianrong
    SENSORS, 2024, 24 (23)
  • [7] Research on improved YOLOv8 algorithm for insulator defect detection
    Lin Zhang
    Boqun Li
    Yang Cui
    Yushan Lai
    Jing Gao
    Journal of Real-Time Image Processing, 2024, 21
  • [8] Research on improved YOLOv8 algorithm for insulator defect detection
    Zhang, Lin
    Li, Boqun
    Cui, Yang
    Lai, Yushan
    Gao, Jing
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [9] Nighttime Vehicle Detection Algorithm Based on Improved YOLOv8
    Huang, Qianqian
    Wei, Mingzhu
    Wang, Xinhua
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 447 - 452
  • [10] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    IEEE ACCESS, 2024, 12 : 44984 - 44997