Highly efficient photoenzymatic CO2 reduction dominated by 2D/2D MXene/C3N5 heterostructured artificial photosynthesis platform

被引:6
作者
Yang, Fengyi [1 ]
Zhang, Pengye [1 ]
Qu, Jiafu [1 ]
Yang, Xiaogang [1 ]
Cai, Yahui [2 ]
Li, Chang Ming [1 ]
Hu, Jundie [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Suzhou 215009, Peoples R China
[2] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Photoenzymatic catalysis; CO; 2; reduction; NADH regeneration; Heterostructure; Artificial photosynthesis; CARBON NITRIDE; NADH REGENERATION; PHOTOCATALYST; PERFORMANCE; CONVERSION; INTERFACE;
D O I
10.1016/j.jcis.2024.08.149
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photoenzyme-coupled catalytic systems offer a promising avenue for selectively converting CO2 into high-value chemicals or fuels. However, two key challenges currently hinder their widespread application: the heavy reliance on the costly coenzyme NADH, and the necessity for metal-electron mediators or photosensitizers to address sluggish reaction kinetics. Herein, we present a robust 2D/2D MXene/C3N5 heterostructured artificial photosynthesis platform for in situ NADH regeneration and photoenzyme synergistic CO2 conversion to HCOOH. The efficiencies of utilizing and transmitting photogenerated charges are significantly enhanced by the abundant it-it conjugation electrons and well-engineered 2D/2D hetero-interfaces. Noteworthy is the achievement of nearly 100 % NADH regeneration efficiency within just 2.5 h by 5 % Ti3C2/C3N5 without electron mediators, and an impressive HCOOH production rate of 3.51 mmol g(-1)h(-1) with nearly 100 % selectivity. This study represents a significant advancement in attaining the highest NADH yield without electron mediator and provides valuable insights into the development of superior 2D/2D heterojunctions for CO2 conversion.
引用
收藏
页码:1121 / 1131
页数:11
相关论文
共 80 条
[1]   S-scheme heterojunction of crystalline carbon nitride nanosheets and ultrafine WO3 nanoparticles for photocatalytic CO2 reduction [J].
Chen, Gongjie ;
Zhou, Ziruo ;
Li, Bifang ;
Lin, Xiahui ;
Yang, Can ;
Fang, Yuanxing ;
Lin, Wei ;
Hou, Yidong ;
Zhang, Guigang ;
Wang, Sibo .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 140 :103-112
[2]   Simultaneously Tuning Band Structure and Oxygen Reduction Pathway toward High-Efficient Photocatalytic Hydrogen Peroxide Production Using Cyano-Rich Graphitic Carbon Nitride [J].
Chen, Lei ;
Chen, Cheng ;
Yang, Zhi ;
Li, Shan ;
Chu, Chiheng ;
Chen, Baoliang .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (46)
[3]   Reinforcing flower-like Znln2S4 via interfacial charge separation to boost CO2 photoreduction [J].
Chen, Tiantian ;
Zhou, Min ;
Zhang, Zhiquan ;
Yang, Kai ;
Fu, Xiaohong ;
Li, Huaming ;
Shi, Weidong ;
Jiang, Zhifeng .
CHEMICAL ENGINEERING SCIENCE, 2024, 285
[4]   Advanced semiconductor catalyst designs for the photocatalytic reduction of CO2 [J].
Chen, Zhangsen ;
Zhang, Gaixia ;
Cao, Siyi ;
Chen, Guozhu ;
Li, Cuncheng ;
Izquierdo, Ricardo ;
Sun, Shuhui .
MATERIALS REPORTS: ENERGY, 2023, 3 (02)
[5]   Intensifying Electron Utilization by Surface-Anchored Rh Complex for Enhanced Nicotinamide Cofactor Regeneration and Photoenzymatic CO2 Reduction [J].
Cheng, Yuqing ;
Shi, Jiafu ;
Wu, Yizhou ;
Wang, Xueying ;
Sun, Yiying ;
Cai, Ziyi ;
Chen, Yu ;
Jiang, Zhongyi .
RESEARCH, 2021, 2021
[6]   Engineering the Photocatalytic Behaviors of g/C3N4-Based Metal-Free Materials for Degradation of a Representative Antibiotic [J].
Deng, Yanchun ;
Liu, Jun ;
Huang, Yanbin ;
Ma, Mengmeng ;
Liu, Kong ;
Dou, Xiaomin ;
Wang, Zhijie ;
Qu, Shengchun ;
Wang, Zhanguo .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (31)
[7]   Platinum quantum dots-decorated MXene-derived titanium dioxide nanowire/Ti3C2 heterostructure for use in solar-driven gas-phase carbon dioxide reduction to yield value-added fuels [J].
Devarayapalli, Kamakshaiah Charyulu ;
Vattikuti, S. V. Prabhakar ;
Kim, Dong Jin ;
Lim, Youngsu ;
Kim, Bolam ;
Kim, Gyuhyeon ;
Lee, Dae Sung .
JOURNAL OF ENERGY CHEMISTRY, 2023, 82 :627-637
[8]   Durable CO2 conversion in the proton-exchange membrane system [J].
Fang, Wensheng ;
Guo, Wei ;
Lu, Ruihu ;
Yan, Ya ;
Liu, Xiaokang ;
Wu, Dan ;
Li, Fu Min ;
Zhou, Yansong ;
He, Chaohui ;
Xia, Chenfeng ;
Niu, Huiting ;
Wang, Sicong ;
Liu, Youwen ;
Mao, Yu ;
Zhang, Chengyi ;
You, Bo ;
Pang, Yuanjie ;
Duan, Lele ;
Yang, Xuan ;
Song, Fei ;
Zhai, Tianyou ;
Wang, Guoxiong ;
Guo, Xingpeng ;
Tan, Bien ;
Yao, Tao ;
Wang, Ziyun ;
Xia, Bao Yu .
NATURE, 2024, 626 (7997) :86-+
[9]   Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification [J].
Feng, Xiaofang ;
Yu, Zongxue ;
Long, Runxuan ;
Li, Xiuhui ;
Shao, Liangyan ;
Zeng, Haojie ;
Zeng, Guangyong ;
Zuo, Yiheng .
SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 253
[10]   Nitrogen-rich carbon nitride (C3N5) coupled with oxygen vacancy TiO2 arrays for efficient photocatalytic H2O2 production [J].
Gan, Wei ;
Fu, Xucheng ;
Jin, Juncheng ;
Guo, Jun ;
Zhang, Miao ;
Chen, Ruixin ;
Ding, Chunsheng ;
Lu, Yuqing ;
Li, Jianrou ;
Sun, Zhaoqi .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653 :1028-1039