Microarchitecture Aware Neural Architecture Search for TinyML Devices

被引:1
作者
Guan, Juntao [1 ,2 ,3 ]
Liu, Gufeng [1 ,3 ]
Zeng, Fanhong [1 ,3 ]
Lai, Rui [1 ,3 ]
Ding, Ruixue [1 ,2 ]
Zhu, Zhangming [1 ,2 ,3 ]
机构
[1] Xidian Univ, Key Lab Analog Integrated Circuits & Syst, Minist Educ, Xian, Peoples R China
[2] Xidian Univ, Hangzhou Inst Technol, Hangzhou, Peoples R China
[3] Xidian Univ, Sch Integrated Circuit, Xian, Peoples R China
来源
2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Neural architecture search; Tiny machine learning; Microarchitecture; Energy efficiency;
D O I
10.1109/AICAS59952.2024.10595922
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Designing accurate and efficient models for tiny machine learning (TinyML) devices is challenging because of its strict power consumption limitations and accuracy requirements. This paper proposed a Microarchitecture Aware Neural Architecture Search (M-NAS) method to consider the detailed microarchitecture into NAS and improve the energy efficiency of TinyML devices. We first build a microarchitecture aware candidate operators pool with the limitation of microarchitecture to balance the inference efficiency and accuracy. Moreover, we generate a microarchitecture aware search space by integrating the microarchitecture-level power and latency into NAS with the help of back-end layout simulation based on the microarchitecture of NPU. These strategies assist our M-NAS to find the optimal model for the microarchitecture of the target NPU. Extensive experiments demonstrate that with the help of the M-NAS, the target NPU yields a considerable 67.1% Top-1 accuracy on ImageNet and achieves a record ultra-high energy efficiency of 3809.52 Frames/J.
引用
收藏
页码:522 / 526
页数:5
相关论文
共 8 条
[1]  
Cai H., 2020, 8 ICLR
[2]  
Lai LZ, 2018, Arxiv, DOI [arXiv:1801.06601, DOI 10.48550/ARXIV.1801.06601]
[3]  
Lin J, 2021, ADV NEUR IN, V34
[4]  
Lin Ji, 2020, Advances in Neural Information Processing Systems, V33
[5]   ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design [J].
Ma, Ningning ;
Zhang, Xiangyu ;
Zheng, Hai-Tao ;
Sun, Jian .
COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 :122-138
[6]   MobileNetV2: Inverted Residuals and Linear Bottlenecks [J].
Sandler, Mark ;
Howard, Andrew ;
Zhu, Menglong ;
Zhmoginov, Andrey ;
Chen, Liang-Chieh .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4510-4520
[7]   An Ultra-Low Power TinyML System for Real-Time Visual Processing at Edge [J].
Xu, Kunran ;
Zhang, Huawei ;
Li, Yishi ;
Zhang, Yuhao ;
Lai, Rui ;
Liu, Yi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (07) :2640-2644
[8]   Rethinking Bottleneck Structure for Efficient Mobile Network Design [J].
Zhou, Daquan ;
Hou, Qibin ;
Chen, Yunpeng ;
Feng, Jiashi ;
Yan, Shuicheng .
COMPUTER VISION - ECCV 2020, PT III, 2020, 12348 :680-697