Stability of optimal spherical codes

被引:0
作者
Boroczky, Karoly J. [1 ]
Glazyrin, Alexey [2 ]
机构
[1] Alfred Reny Inst Math, Realtanoda U 13 15, H-1053 Budapest, Hungary
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, One West Univ Blvd, Brownsville, TX 78520 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 205卷 / 03期
关键词
Spherical codes; Packing of equal balls; E8; lattice; Leech lattice; Delsarte-tight code; Kissing number; Stability; UNIQUENESS;
D O I
10.1007/s00605-024-02021-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For many extremal configurations of points on a sphere, the linear programming approach can be used to show their optimality. In this paper we establish the general framework for showing stability of such configurations and use this framework to prove the stability of the two spherical codes formed by minimal vectors of the lattice E8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_8$$\end{document} and of the Leech lattice.
引用
收藏
页码:455 / 475
页数:21
相关论文
共 16 条
[1]   Equiangular lines and spherical codes in Euclidean space [J].
Balla, Igor ;
Draxler, Felix ;
Keevash, Peter ;
Sudakov, Benny .
INVENTIONES MATHEMATICAE, 2018, 211 (01) :179-212
[2]   UNIQUENESS OF CERTAIN SPHERICAL CODES [J].
BANNAI, E ;
SLOANE, NJA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (02) :437-449
[3]   Stability of the Simplex Bound for Packings by Equal Spherical Caps Determined by Simplicial Regular Polytopes [J].
Boroczky, Karoly ;
Boroczky, Karoly J. ;
Glazyrin, Alexey ;
Kovacs, Agnes .
DISCRETE GEOMETRY AND SYMMETRY: DEDICATED TO KAROLY BEZDEK AND EGON SCHULTE ON THE OCCASION OF THEIR 60TH BIRTHDAYS, 2018, 234 :31-60
[4]   Universally optimal distribution of points on spheres [J].
Cohn, Henry ;
Kumar, Abhinav .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (01) :99-148
[5]   Optimality and uniqueness of the Leech lattice among lattices [J].
Cohn, Henry ;
Kumar, Abhinav .
ANNALS OF MATHEMATICS, 2009, 170 (03) :1003-1050
[6]  
Conway J.H., 1998, Sphere Packings, Lattices and Groups
[7]  
Delsarte P., 1977, GEOMETRIAE DEDICATA, V6, P363, DOI [DOI 10.1016/B978-0-12-189420-7.50013-X, DOI 10.1007/BF03187604]
[8]  
Ericson T., 2001, Codes on Euclidean spheres
[9]   REGULAR 2-GRAPH ON 276 VERTICES [J].
GOETHALS, JM ;
SEIDEL, JJ .
DISCRETE MATHEMATICS, 1975, 12 (02) :143-158
[10]   Stability for vertex isoperimetry in the cube [J].
Keevash, Peter ;
Long, Eoin .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 :113-144