Some norm inequalities for accretive Hilbert space operators

被引:0
作者
Moosavi, Baharak [1 ]
Hosseini, Mohsen Shah [2 ]
机构
[1] Islamic Azad Univ, Dept Math, Safadasht Branch, Tehran, Iran
[2] Islamic Azad Univ, Dept Math, Shahr E Qods Branch, Tehran, Iran
来源
CUBO-A MATHEMATICAL JOURNAL | 2024年 / 26卷 / 02期
关键词
Bounded linear operator; Hilbert space; norm inequality; numerical radius; NUMERICAL RADIUS INEQUALITIES; LINEAR-OPERATORS; LOWER BOUNDS;
D O I
10.56754/0719-0646.2602.327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New norm inequalities for accretive operators on Hilbert space are given. Among other inequalities, we prove that if A, B is an element of B(H) and B is self-adjoint and also C-m,C-M(iAB) is accretive, then 4 root Mm / M+m & Vert;AB & Vert; <= omega(AB - BA(& lowast;)), where M and m are positive real numbers with M > m and C-m,C-M(A) = (A(& lowast;)- mI)(MI - A). Also, we show that if C-m,C-M(A) is accretive and (M - m) <= k & Vert; A & Vert;, then omega(AB) <= (2 + k)omega(A)omega(B).
引用
收藏
页码:327 / 340
页数:14
相关论文
共 17 条
[1]  
Dragomir SS, 2008, TAMKANG J MATH, V39, P1
[2]   Reverse inequalities for the numerical radius of linear operators in Hilbert spaces [J].
Dragomir, SS .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 73 (02) :255-262
[3]  
Dragomir SS, 2013, SPRINGERBRIEF MATH, P1, DOI 10.1007/978-3-319-01448-7
[4]   UNITARILY-INVARIANT OPERATOR NORMS [J].
FONG, CK ;
HOLBROOK, JAR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1983, 35 (02) :274-299
[5]   Operator inequalities via accretive transforms [J].
Guemues, Ibrahim Halil ;
Moradi, Hamid Reza ;
Sababheh, Mohammad .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (01) :40-52
[6]  
HOLBROOK JA, 1969, J REINE ANGEW MATH, V237, P166
[7]   AN ALTERNATIVE ESTIMATE FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS [J].
Hosseini, Mohsen Shah ;
Moosavi, Baharak ;
Moradi, Hamid Reza .
MATHEMATICA SLOVACA, 2020, 70 (01) :233-237
[8]   Some Numerical Radius Inequalities for Products of Hilbert Space Operators [J].
Hosseini, Mohsen Shah ;
Moosavi, Baharak .
FILOMAT, 2019, 33 (07) :2089-2093
[9]   SOME INEQUALITIES FOR THE NUMERICAL RADIUS FOR HILBERT SPACE OPERATORS [J].
Hosseini, Mohsen Shah ;
Omidvar, Mohsen Erfanian .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (03) :489-496
[10]   Numerical radius inequalities for Hilbert space operators [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2005, 168 (01) :73-80