An efficient image scheme for IoMT using 4D memristive hyperchaotic map

被引:1
|
作者
Lai, Qiang [1 ]
Wang, Huangtao [1 ]
机构
[1] East China Jiaotong Univ, Sch Elect & Automat Engn, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaos; Hyperchaotic map; Image encryption; Memristor; IoMT; ENCRYPTION; CHAOS;
D O I
10.1007/s11071-024-10220-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The security of Internet of Medical Things (IoMT) is closely linked to patient safety, unauthorized access may result in grave consequences. This paper reports a privacy protection scheme in the IoMT. A 4D memristive map (4D-TLMM) combining trigonometric functions, Logistic map and memristor is first designed with Lyapnov exponent and chaotic range increasing with the parameters, and its high randomness of resulting chaotic sequence is verified using NIST and sample entropy. Furthermore, a digital hardware testbed is developed to demonstrate its feasibility for hardware implementation. Then we present and analyze the specific situation of IoMT, and an image encryption algorithm (TLMM-IEA) using novel reflection scrambling and split diffusion is developed accordingly, which effectively disrupts the pixel relationships and ensures that only correct key can access patient information. After conducting numerical simulations on medical datasets, it is determined that the proposed scheme achieves average NPCR and UACI values of 99.6086%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 33.4644%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and possesses comprehensive robustness. Additionally, the encryption of 224x224\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$224\times 224$$\end{document} image using it only takes 0.0306 s, demonstrating its exceptional reliability in protecting IoMT security.
引用
收藏
页码:22485 / 22503
页数:19
相关论文
共 50 条
  • [41] An image encryption method based on multi-space confusion using hyperchaotic 2D Vincent map derived from optimization benchmark function
    Uğur Erkan
    Abdurrahim Toktas
    Samet Memiş
    Qiang Lai
    Genwen Hu
    Nonlinear Dynamics, 2023, 111 : 20377 - 20405
  • [42] Image encryption using fission diffusion process and a new hyperchaotic map
    Lai, Qiang
    Hua, Hanqiang
    Zhao, Xiao-Wen
    Erkan, Ugur
    Toktas, Abdurrahim
    CHAOS SOLITONS & FRACTALS, 2023, 175
  • [43] Plaintext-related image encryption scheme using hyperchaotic system and DNA computing
    Liu, Xilin
    Yan, Guangle
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)
  • [44] Efficient image encryption scheme based on generalized logistic map for real time image processing
    Asif A. Shah
    Shabir A. Parah
    Mamoon Rashid
    Mohamed Elhoseny
    Journal of Real-Time Image Processing, 2020, 17 : 2139 - 2151
  • [45] Efficient image encryption scheme based on generalized logistic map for real time image processing
    Shah, Asif A.
    Parah, Shabir A.
    Rashid, Mamoon
    Elhoseny, Mohamed
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (06) : 2139 - 2151
  • [46] Facial image encryption scheme based on improved 4-D hyperchaotic system
    Zhang, Xuncai
    Liu, Mengrui
    Niu, Ying
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (03)
  • [47] Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria
    Li, Qingdu
    Zeng, Hongzheng
    Li, Jing
    NONLINEAR DYNAMICS, 2015, 79 (04) : 2295 - 2308
  • [48] Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria
    Qingdu Li
    Hongzheng Zeng
    Jing Li
    Nonlinear Dynamics, 2015, 79 : 2295 - 2308
  • [49] The existence of homoclinic orbits in a 4D Lorenz-type hyperchaotic system
    Chen, Yuming
    NONLINEAR DYNAMICS, 2017, 87 (03) : 1445 - 1452
  • [50] A Novel Image Encryption Scheme Based on 2D Fractional Chaotic Map, DWT and 4D Hyper-chaos
    Ding, Lina
    Ding, Qun
    ELECTRONICS, 2020, 9 (08) : 1 - 20