Experimental investigation on the heat transfer characteristics of loop heat pipe with carbon spheres modified nickel wick

被引:0
|
作者
Ma, Zhengyuan [1 ]
Tan, Yubo [1 ]
Zhang, Zikang [1 ]
Liu, Wei [1 ]
Liu, Zhichun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Loop heat pipe; Carbon spheres modified nickel wick; Surface modification; Hydrophilic functional groups; EVAPORATOR; PERFORMANCE; TESTS;
D O I
10.1016/j.applthermaleng.2024.123956
中图分类号
O414.1 [热力学];
学科分类号
摘要
Loop heat pipe (LHP), as passive heat transfer system, is one of the methods for thermal management of electronic components. To improve the heat transfer performance of LHPs, there is a pressing need for highperformance wicks. In this study, the hydrothermal carbonization method was used to fabricate a carbon spheres modified nickel wick (CSs-Ni-Wick) based on a biporous wick. The physical characteristics of the CSs-NiWick were then analyzed experimentally. This unique CSs-Ni-Wick combined the advantages of large pores for reducing flow resistance and small pores for enhancing capillarity. Furthermore, the CSs-Ni-Wick surface exhibited a higher concentration of hydrophilic functional groups, effectively facilitating the replenishment of subcooled liquid to the vapor-liquid interface and preventing wick drying. Based on these advantages, a flat plate LHP was constructed and subjected to multiple tests in horizontal condition to evaluate the heat transfer performance of the CSs-Ni-Wick. Experimental results revealed that the LHP achieved a maximum heat load of 140 W (20 W/cm2) and a minimum thermal resistance of 0.357 degrees C/W, while maintaining the heat source temperature below 85degree celsius. Additionally, the implementation of a micro-carbonized surface increased the density of vaporization cores, facilitating faster vapor nucleation, particularly at low heat loads. This enables vapor to be transferred more quickly from the evaporator to the condenser, leading to a smooth startup in the brass LHP using methanol as the working fluid, characterized by the absence of temperature overshoot or oscillation.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Operational characteristics of flat type loop heat pipe with biporous wick
    Liu, ZhiChun
    Li, Huan
    Chen, BinBin
    Yang, JinGuo
    Liu, Wei
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 58 : 180 - 185
  • [42] Experimental study on the loop heat pipe with a planar bifacial wick structure
    Joung, Wukchul
    Yu, Taeu
    Lee, Jinho
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (7-8) : 1573 - 1581
  • [43] An experimental investigation on the heat transfer characteristics of closed-loop pulsating heat pipe with graphene-water nanofluid
    Tharayil, Trijo
    Asirvatham, Lazarus Godson
    Manova, Stephen
    Vivek, V. M.
    Saravanan, M. S. Senthil
    Sajin, J. B.
    Wongwises, Somchai
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (22) : 12721 - 12737
  • [44] Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat Pipe
    Singh, Randeep
    Akbarzadeh, Aliakbar
    Mochizuki, Masataka
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2009, 131 (08): : 1 - 10
  • [45] Multilayer wick structure of loop heat pipe
    Cal, Qingjun
    Chen, Chung-Lung
    Asfia, Julie F.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2007, VOL 1: ADVANCES IN AEROSPACE TECHNOLOGY, 2008, : 3 - 8
  • [46] Effect of the number of grooves on a wick's surface on the heat transfer performance of loop heat pipe
    Wu, S. C.
    Wang, D.
    Gao, J. H.
    Huang, Z. Y.
    Chen, Y. M.
    APPLIED THERMAL ENGINEERING, 2014, 71 (01) : 371 - 377
  • [47] THREE-DIMENSIONAL NUMERICAL STUDY ON THE FLOW AND HEAT TRANSFER IN WICK OF LOOP HEAT PIPE
    Shao, Bo
    Li, Nanxi
    Chen, Yu
    Dong, Deping
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 11, 2021,
  • [48] Experimental investigation of cryogenic loop heat pipe
    Li, Qiang
    Ma, Lu
    Xuan, Yi-Min
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (01): : 120 - 123
  • [49] Experimental study on the flat loop heat pipe with minichannel wick under low heat flux
    Lai, Canlong
    Ji, Jie
    Dong, Qixuan
    Lin, Jiayu
    Zhao, Jingyi
    Wei, Jun
    Sun, Yancheng
    Liu, Minghou
    APPLIED THERMAL ENGINEERING, 2024, 256
  • [50] Phase change heat transfer characteristics of an additively manufactured wick for heat pipe applications
    Jafari, Davoud
    Wits, Wessel W.
    Geurts, Bernard J.
    APPLIED THERMAL ENGINEERING, 2020, 168