Experimental investigation on the heat transfer characteristics of loop heat pipe with carbon spheres modified nickel wick

被引:0
|
作者
Ma, Zhengyuan [1 ]
Tan, Yubo [1 ]
Zhang, Zikang [1 ]
Liu, Wei [1 ]
Liu, Zhichun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Loop heat pipe; Carbon spheres modified nickel wick; Surface modification; Hydrophilic functional groups; EVAPORATOR; PERFORMANCE; TESTS;
D O I
10.1016/j.applthermaleng.2024.123956
中图分类号
O414.1 [热力学];
学科分类号
摘要
Loop heat pipe (LHP), as passive heat transfer system, is one of the methods for thermal management of electronic components. To improve the heat transfer performance of LHPs, there is a pressing need for highperformance wicks. In this study, the hydrothermal carbonization method was used to fabricate a carbon spheres modified nickel wick (CSs-Ni-Wick) based on a biporous wick. The physical characteristics of the CSs-NiWick were then analyzed experimentally. This unique CSs-Ni-Wick combined the advantages of large pores for reducing flow resistance and small pores for enhancing capillarity. Furthermore, the CSs-Ni-Wick surface exhibited a higher concentration of hydrophilic functional groups, effectively facilitating the replenishment of subcooled liquid to the vapor-liquid interface and preventing wick drying. Based on these advantages, a flat plate LHP was constructed and subjected to multiple tests in horizontal condition to evaluate the heat transfer performance of the CSs-Ni-Wick. Experimental results revealed that the LHP achieved a maximum heat load of 140 W (20 W/cm2) and a minimum thermal resistance of 0.357 degrees C/W, while maintaining the heat source temperature below 85degree celsius. Additionally, the implementation of a micro-carbonized surface increased the density of vaporization cores, facilitating faster vapor nucleation, particularly at low heat loads. This enables vapor to be transferred more quickly from the evaporator to the condenser, leading to a smooth startup in the brass LHP using methanol as the working fluid, characterized by the absence of temperature overshoot or oscillation.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Operational characteristics of flat type loop heat pipe with biporous wick
    Liu, ZhiChun
    Li, Huan
    Chen, BinBin
    Yang, JinGuo
    Liu, Wei
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 58 : 180 - 185
  • [32] Experimental Study on Thermal Performance of a Loop Heat Pipe with Different Working Wick Materials
    Htoo, Kyaw Zin
    Huynh, Phuoc Hien
    Kariya, Keishi
    Miyara, Akio
    ENERGIES, 2021, 14 (09)
  • [33] Fractal Loop Heat Pipe performance testing with a compressed carbon foam wick structure
    Silk, Eric A.
    Myre, David
    APPLIED THERMAL ENGINEERING, 2013, 59 (1-2) : 290 - 297
  • [34] Experimental investigation on thermal characteristics of a novel loop heat pipe for cooling high heat flux electronic chips
    Xiong, Kangning
    Meng, Like
    Wang, Shuangfeng
    Zhang, L. Winston
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 187
  • [35] Analytical study of impact of the wick's fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe
    Yu, Min
    Diallo, Thierno M. O.
    Zhao, Xudong
    Zhou, Jinzhi
    Du, Zhenyu
    Ji, Jie
    Cheng, Yuanda
    ENERGY, 2018, 158 : 746 - 759
  • [36] Study of PTFE wick structure applied to loop heat pipe
    Wu, Shen-Chun
    Gu, Tzu-Wei
    Wang, Dawn
    Chen, Yau-Ming
    APPLIED THERMAL ENGINEERING, 2015, 81 : 51 - 57
  • [37] Experimetal Study on Sintered Powder Wick Loop Heat Pipe
    Putra, Nandy
    Saputra
    Bimo, M. Iqbal
    Irwansyah, Ridho
    Nata, Wayan S.
    4TH INTERNATIONAL MEETING OF ADVANCES IN THERMOFLUIDS (IMAT 2011), PT 1 AND 2, 2012, 1440 : 612 - 620
  • [38] An Experimental Investigation on the Heat Transfer Characteristics of Pulsating Heat Pipe with Adaptive Structured Channels
    Yu, Jiangchuan
    Hong, Sihui
    Koudai, Sasaki
    Dang, Chaobin
    Wang, Shuangfeng
    ENERGIES, 2023, 16 (19)
  • [39] Simulation of heat and mass transfer process in a flat-plate loop heat pipe and experimental comparison
    Zhang, Zikang
    Cui, Haichuan
    Zhao, Shuaicheng
    Zhao, Runze
    Wu, Tong
    Liu, Zhichun
    Liu, Wei
    APPLIED THERMAL ENGINEERING, 2023, 220
  • [40] Experimental study of heat transfer capacity for loop heat pipe with flat disk evaporator
    Zhang, Zikang
    Zhang, Hao
    Ma, Zhenyuan
    Liu, Zhichun
    Liu, Wei
    APPLIED THERMAL ENGINEERING, 2020, 173