Average spin Chern number

被引:1
|
作者
Gonzalez-Hernandez, Rafael [1 ,2 ]
Uribe, Bernardo [3 ]
机构
[1] Univ Norte, Dept Fis & Geociencias, Km 5 Via Antigua Puerto Colombia, Barranquilla 081007, Colombia
[2] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[3] Univ Norte, Dept Matemat & Estadist, Km 5 Via Antigua Puerto Colombia, Barranquilla 081007, Colombia
关键词
TOPOLOGICAL PHASE-TRANSITION; MATTER;
D O I
10.1103/PhysRevB.110.125129
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we propose the average spin Chern number (ASCN) as an indicator of the topological significance of the spin degree of freedom within insulating materials. Whenever this number is a nonzero even integer, it distinguishes the material as a spin Chern insulator, and the number is a topological invariant whenever there is a symmetry that commutes with the spin and protects Chern numbers. If this number is not zero, it indicates that the material has nontrivial spin transport properties, and it lies close to the value of the spin Hall conductivity (SHC) within the band gap. For systems where the spin commutes with the Hamiltonian, the ASCN matches the SHC. When the noncommutativity of the spin with the Hamiltonian cannot be neglected, both values are nonzero simultaneously. The ASCN is therefore a good complement for the intrinsic contribution of the SHC, and permits us to detect topological information of the material, which is not possible alone from the value of the SHC.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Engineering high Chern number insulators
    Woo, Sungjong
    Woo, Seungbum
    Ryu, Jung-Wan
    Park, Hee Chul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 85 (08) : 661 - 669
  • [32] Measuring the Chern number with quantum oscillations
    Wright, Anthony R.
    PHYSICAL REVIEW B, 2013, 87 (08):
  • [33] Topology of a dissipative spin: Dynamical Chern number, bath-induced nonadiabaticity, and a quantum dynamo effect
    Henriet, Loic
    Sclocchi, Antonio
    Orth, Peter P.
    Le Hur, Karyn
    PHYSICAL REVIEW B, 2017, 95 (05)
  • [34] Monolayer 1T-LaN2: Dirac spin-gapless semiconductor of p-state and Chern insulator with a high Chern number
    Li, Linyang
    Kong, Xiangru
    Chen, Xin
    Li, Jia
    Sanyal, Biplab
    Peeters, Francois M.
    APPLIED PHYSICS LETTERS, 2020, 117 (14)
  • [35] Chern number formula for ramified coverings
    Izawa, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (01) : 1 - 15
  • [36] Symmetry protected topological charge in symmetry broken phase: Spin-Chern, spin-valley-Chern and mirror-Chern numbers
    Ezawa, Motohiko
    PHYSICS LETTERS A, 2014, 378 (16-17) : 1180 - 1184
  • [37] Acoustic Valley Spin Chern Insulators
    Zhu, Zhenxiao
    Yan, Mou
    Pan, Jincheng
    Yang, Yating
    Deng, Weiyin
    Lu, Jiuyang
    Huang, Xueqin
    Liu, Zhengyou
    PHYSICAL REVIEW APPLIED, 2021, 16 (01)
  • [38] Spin of Chern-Simons vortices
    Banerjee, R
    Mukherjee, P
    NUCLEAR PHYSICS B, 1996, 478 (1-2) : 235 - 244
  • [39] Proposal for a topological spin Chern pump
    Zhou, C. Q.
    Zhang, Y. F.
    Sheng, L.
    Shen, R.
    Sheng, D. N.
    Xing, D. Y.
    PHYSICAL REVIEW B, 2014, 90 (08)
  • [40] The average number of cycles
    Plesken, W.
    Robertz, D.
    ARCHIV DER MATHEMATIK, 2009, 93 (05) : 445 - 449