Fine multibubble analysis in the higher-dimensional Brezis-Nirenberg problem

被引:1
作者
Koenig, Tobias [1 ]
Laurain, Paul [2 ,3 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, Robert Mayer Str 10, D-60325 Frankfurt, Germany
[2] Univ Paris, Inst Math Jussieu, Case 7052, F-75205 Paris 13, France
[3] PSL Res Univ, Ecole normale Super, DMA, CNRS, F-75005 Paris, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2024年 / 41卷 / 05期
关键词
Brezis-Nirenberg problem; critical Sobolev exponent; multiple blow-up; speed of concentration; SEMILINEAR ELLIPTIC-EQUATIONS; MULTISPIKE SOLUTIONS;
D O I
10.4171/AIHPC/95
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a bounded set Omega subset of R-N and a perturbation V is an element of C-1((Omega) over bar), we analyze the concentration behavior of a blow-up sequence of positive solutions to -Delta u(epsilon)+epsilon Vu(epsilon)=N(N-2)u epsilon((N-2)(N+2)) for dimensions N >= 4, which are non-critical in the sense of the Brezis-Nirenberg problem. For the general case of multiple concentration points, we prove that concentration points are isolated and characterize the vector of these points as a critical point of a suitable function derived from the Green function of -Delta on Omega. Moreover, we give the leading-order expression of the concentration speed. This paper, with a recent one by the authors [arXiv:2208.12337, 2022] in dimension N = 3, gives a complete picture of blow-up phenomena in the Brezis-Nirenberg framework.
引用
收藏
页码:1239 / 1287
页数:49
相关论文
共 31 条
[1]  
[Anonymous], 1997, Courant Lecture Notes in Mathematics
[2]  
[Anonymous], 2003, Adv. Differ. Equ.
[3]   ELLIPTIC-EQUATIONS WITH NEARLY CRITICAL GROWTH [J].
ATKINSON, FV ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 70 (03) :349-365
[4]  
Aubin Thierry., 1998, Some nonlinear problems in Riemannian geometry
[5]  
BAHRI A, 1995, CALC VAR PARTIAL DIF, V3, P67, DOI 10.1007/s005260050007
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]  
Brezis H., 1989, Partial Differential Equations and the Calculus of Variations, Progress in Nonlinear Differential Equations Applications, V1, P149
[9]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[10]   SOME NOTES ON THE METHOD OF MOVING PLANES [J].
DANCER, EN .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (03) :425-434