Determination of levodopa using a glassy carbon electrode modified with TiO2 nanoparticles and carbon nanotubes in real samples

被引:0
作者
Ebrahimi, Fatemeh [1 ]
Rafati, Amir Abbas [1 ]
Bagheri, Ahmad [2 ]
机构
[1] Bu Ali Sina Univ, Fac Chem & Petr Sci, Dept Phys Chem, POB 65174, Hamadan, Iran
[2] Semnan Univ, Dept Chem, Semnan, Iran
关键词
Levodopa; TiO2; nanoparticles; Glassy carbon electrode; Carbon nanotubes; Voltammetry; URIC-ACID; L-DOPA; ASCORBIC-ACID; ELECTROCATALYTIC OXIDATION; VOLTAMMETRIC DETERMINATION; ELECTROCHEMICAL-BEHAVIOR; TITANIUM-DIOXIDE; PASTE ELECTRODE; SENSOR; PHARMACEUTICALS;
D O I
10.1007/s10008-024-05978-4
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study presents a novel sensor for the detection of levodopa (LD) utilizing a glassy carbon electrode modified with a TiO2/MWCNT nanocomposite. Structural analysis confirmed the suitability of the nanocomposite for sensor fabrication, revealing enhancements in effective surface area and sensitivity. Characterization studies employing SEM, EDX, and FT-IR analyses provided insights into the composition and morphology of the modified electrode. The sensor exhibited exceptional performance metrics, including a wide linear detection range (19.6-545 mu M), low detection limit (2.51 mu M), high repeatability (78.1%), and remarkable average recovery rates in real samples (99.86%). Minimal interference from interfering species further demonstrated its practical utility. Moreover, the sensor's direct applicability in diverse sample matrices, without the need for sample separation, highlighted its versatility and convenience. Comparative analysis revealed the sensor's performance to be comparable to established methods, offering a cost-effective and streamlined approach to LD measurement. Overall, the modified glassy carbon electrode with TiO2/MWCNT nanocomposite presents a clear, suitable, and stable electrocatalytic response, promising significant advancements in biosensing technology for LD detection.
引用
收藏
页码:3985 / 3998
页数:14
相关论文
共 50 条