On Small-Amplitude Asymmetric Water Waves

被引:0
|
作者
Seth, Douglas Svensson [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
Asymmetric waves; Non-symmetric waves; Capillary-gravity water waves; Local bifurcation; Lyapunov-Schmidt reduction; NONSYMMETRICAL GRAVITY-WAVES; SYMMETRY-BREAKING; BIFURCATION; EXISTENCE;
D O I
10.1007/s42286-024-00104-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the method used by M ae hlen and Seth (Asymmetric traveling wave solutions of the capillary-gravity Whitham equation, 2023, arxiv:2312.15343) used to prove the existence of small-amplitude asymmetric solutions to the capillary-gravity Whitham equation, so that it can be applied directly to a class of similar equations. The purpose is to prove or disprove the existence of asymmetric waves for the water wave problem or other model equations for water waves. Our main result in this paper is a theorem that gives both necessary and sufficient conditions for the existence of small-amplitude periodic asymmetric solutions for this class of equations. The result is then applied to an infinite depth capillary-gravity Whitham equation and an infinite depth capillary-gravity Babenko equation to show a nonexistence result of small-amplitude waves for these equations. This example also highlights the similarities between these equations suggesting the potential existence of small-amplitude asymmetric waves for the finite depth capillary-gravity Babenko equation.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A method for measuring small-amplitude waves on a water surface
    B. V. Boshenyatov
    Yu. K. Levin
    V. V. Popov
    A. V. Semyanistyi
    Instruments and Experimental Techniques, 2011, 54 : 254 - 255
  • [2] A method for measuring small-amplitude waves on a water surface
    Boshenyatov, B. V.
    Levin, Yu K.
    Popov, V. V.
    Semyanistyi, A. V.
    INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2011, 54 (02) : 254 - 255
  • [3] FORCED SMALL-AMPLITUDE WATER WAVES - A COMPARISON OF THEORY AND EXPERIMENT
    URSELL, F
    DEAN, RG
    YU, YS
    JOURNAL OF FLUID MECHANICS, 1960, 7 (01) : 33 - 52
  • [4] SMALL-AMPLITUDE WAVES IN A NONUNIFORM PLASMA
    AUER, PL
    MASON, RJ
    PHYSICS OF PLASMAS, 1994, 1 (03) : 481 - 484
  • [5] An Existence Theory for Small-Amplitude Doubly Periodic Water Waves with Vorticity
    E. Lokharu
    D. S. Seth
    E. Wahlén
    Archive for Rational Mechanics and Analysis, 2020, 238 : 607 - 637
  • [6] An Existence Theory for Small-Amplitude Doubly Periodic Water Waves with Vorticity
    Lokharu, E.
    S. Seth, D.
    Wahlen, E.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 238 (02) : 607 - 637
  • [7] Exact solutions for small-amplitude capillary-gravity water waves
    Ionescu-Kruse, Delia
    WAVE MOTION, 2009, 46 (06) : 379 - 388
  • [8] Small-amplitude steady water waves with critical layers: Non-symmetric waves
    Kozlov, V
    Lokharu, E.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (07) : 4170 - 4191
  • [9] On the Initiation of Bubble Detonation by Small-Amplitude Waves
    I. K. Gimaltdinov
    S. A. Lepikhin
    High Temperature, 2022, 60 : 652 - 661
  • [10] On the Initiation of Bubble Detonation by Small-Amplitude Waves
    Gimaltdinov, I. K.
    Lepikhin, S. A.
    HIGH TEMPERATURE, 2022, 60 (05) : 652 - 661