Estimating metal mass flowrate in gas-atomization for metal powder production

被引:1
作者
Kumar, Niraj [1 ]
Sarkar, Supriya [2 ]
Anand, T. N. C. [3 ]
Bakshi, Shamit [1 ]
机构
[1] Indian Inst Technol Madras, Dept Mech Engn, Chennai, India
[2] Alleima India Pvt Ltd, Pune, Maharashtra, India
[3] Indian Inst Technol Palakkad, Dept Mech Engn, Kanjikode, Kerala, India
关键词
Gas-atomization; Metal powder; Melt flowrate; Melt superheat; Gas-to-metal ratio; MELT DELIVERY TUBE; POSITION; PRESSURE; GEOMETRY; NOZZLE; TIP;
D O I
10.1016/j.powtec.2024.120238
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The gas-to-metal ratio (GMR) is considered an important parameter in the gas-atomization process for producing metal powders. Consequently, correlations for estimating the mass median particle size (d(50)) of powders use GMR as the main parameter. In an industrial setup, it is not easy to measure the melt flowrate to ascertain the GMR. Hence, in this study, we develop a theoretical approach to estimate the melt flowrate and measure it in a pilot setup. Both our theoretical and computational fluid dynamics approaches are in good agreement with the measurements. We then conduct a parametric study to elaborate the effect of certain parameters on the melt flowrate. We believe that the theoretical approach presented here will help to quickly estimate the powder size (d(50)) expected from a gas-atomization system. This will help to correctly choose geometric and operating parameters to reduce the spread in powder size distribution in an actual application.
引用
收藏
页数:17
相关论文
共 28 条
[1]   Progress in gas atomization of liquid metals by means of a De Laval nozzle [J].
Allimant, A. ;
Planche, M. P. ;
Bailly, Y. ;
Dembinski, L. ;
Coddet, C. .
POWDER TECHNOLOGY, 2009, 190 (1-2) :79-83
[2]   Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior [J].
Aydin, Ozer ;
Unal, Rahmi .
COMPUTERS & FLUIDS, 2011, 42 (01) :37-43
[3]   EXPLICIT EQUATION FOR FRICTION FACTOR IN PIPE [J].
CHEN, NH .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1979, 18 (03) :296-297
[4]   Increasing the amorphous yield of {(Fe0.6Co0.4)0.75B0.2Si0.05}96Nb4 powders by hot gas atomization [J].
Ciftci, N. ;
Ellendt, N. ;
Soares Barreto, E. ;
Maedler, L. ;
Uhlenwinkel, V. .
ADVANCED POWDER TECHNOLOGY, 2018, 29 (02) :380-385
[5]  
Dunkley JJ, 2013, WOODH PUBL SER METAL, P3, DOI 10.1533/9780857098900.1.3
[6]   Visualization and modeling for water atomization of low melting point alloy [J].
Hikita, Wataru ;
Ichimura, Tenshiro ;
Inoue, Chihiro ;
Nakaseko, Makoto .
ADVANCED POWDER TECHNOLOGY, 2021, 32 (11) :4235-4244
[7]   A numerical modeling framework for predicting the effects of operational parameters on particle size distribution in the gas atomization process for Nickel-Silicon alloys [J].
Hua, Jinsong ;
Gobber, Federico Simone ;
Grande, Marco Actis ;
Mortensen, Dag ;
Odden, Jan Ove .
POWDER TECHNOLOGY, 2024, 435
[8]  
Kim CS., 1975, Thermophysical properties of stainless steels, DOI [10.2172/4152287, DOI 10.2172/4152287]
[9]  
Kishida H., 1972, Japan Society of Powder and Powder Metallurgy, P19
[10]  
Le T, 1996, INT J POWDER METALL, V32, P353