Diagnosing Progression in Glioblastoma-Tackling a Neuro-Oncology Problem Using Artificial-Intelligence-Derived Volumetric Change over Time on Magnetic Resonance Imaging to Examine Progression-Free Survival in Glioblastoma

被引:7
作者
Belue, Mason J. [1 ]
Harmon, Stephanie A. [1 ]
Chappidi, Shreya [2 ,3 ]
Zhuge, Ying [2 ]
Tasci, Erdal [2 ]
Jagasia, Sarisha [2 ]
Joyce, Thomas [2 ]
Camphausen, Kevin [2 ]
Turkbey, Baris [1 ]
Krauze, Andra V. [2 ]
机构
[1] NCI, Artificial Intelligence Resource, Mol Imaging Branch, Ctr Canc Res,NIH, Bldg 10, Bethesda, MD 20892 USA
[2] NCI, Radiat Oncol Branch, Ctr Canc Res, NIH, Bldg 10, Bethesda, MD 20892 USA
[3] Univ Cambridge, Dept Comp Sci & Technol, 15 JJ Thomson Ave, Cambridge CB3 0FD, England
关键词
glioblastoma; magnetic resonance imaging; artificial intelligence; progression-free survival; radiation therapy; MGMT PROMOTER METHYLATION; RESPONSE ASSESSMENT; RADIOTHERAPY; TEMOZOLOMIDE; GLIOMAS;
D O I
10.3390/diagnostics14131374
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Glioblastoma (GBM) is the most aggressive and the most common primary brain tumor, defined by nearly uniform rapid progression despite the current standard of care involving maximal surgical resection followed by radiation therapy (RT) and temozolomide (TMZ) or concurrent chemoirradiation (CRT), with an overall survival (OS) of less than 30% at 2 years. The diagnosis of tumor progression in the clinic is based on clinical assessment and the interpretation of MRI of the brain using Response Assessment in Neuro-Oncology (RANO) criteria, which suffers from several limitations including a paucity of precise measures of progression. Given that imaging is the primary modality that generates the most quantitative data capable of capturing change over time in the standard of care for GBM, this renders it pivotal in optimizing and advancing response criteria, particularly given the lack of biomarkers in this space. In this study, we employed artificial intelligence (AI)-derived MRI volumetric parameters using the segmentation mask output of the nnU-Net to arrive at four classes (background, edema, non-contrast enhancing tumor (NET), and contrast-enhancing tumor (CET)) to determine if dynamic changes in AI volumes detected throughout therapy can be linked to PFS and clinical features. We identified associations between MR imaging AI-generated volumes and PFS independently of tumor location, MGMT methylation status, and the extent of resection while validating that CET and edema are the most linked to PFS with patient subpopulations separated by district rates of change throughout the disease. The current study provides valuable insights for risk stratification, future RT treatment planning, and treatment monitoring in neuro-oncology.
引用
收藏
页数:17
相关论文
共 41 条
[1]  
[Anonymous], Palantir-Foundry-The Platform -Ontology
[2]  
Baid U, 2021, Arxiv, DOI arXiv:2107.02314
[3]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[4]   Evolution of the gross tumour volume extent during radiotherapy for glioblastomas [J].
Bernchou, Uffe ;
Arnold, Trine Skak Tranemose ;
Axelsen, Brit ;
Kluver-Kristensen, Mette ;
Mahmood, Faisal ;
Harbo, Frederik Severin Grae ;
Asmussen, Jon Thor ;
Hansen, Olfred ;
Bertelsen, Anders Smedegaard ;
Hansen, Steinbjorn ;
Brink, Carsten ;
Dahlrot, Rikke Hedegaard .
RADIOTHERAPY AND ONCOLOGY, 2021, 160 :40-46
[5]   The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials [J].
Binabaj, Maryam Moradi ;
Bahrami, Afsane ;
ShahidSales, Soodabeh ;
Joodi, Marjan ;
Mashhad, Mona Joudi ;
Hassanian, Seyed Mahdi ;
Anvari, Kazem ;
Avan, Amir .
JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (01) :378-386
[6]   Response Assessment Criteria for Glioblastoma: Practical Adaptation and Implementation in Clinical Trials of Antiangiogenic Therapy [J].
Chinot, Olivier L. ;
Macdonald, David R. ;
Abrey, Lauren E. ;
Zahlmann, Gudrun ;
Kerloeguen, Yannick ;
Cloughesy, Timothy F. .
CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2013, 13 (05)
[7]   Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome [J].
Davatzikos, Christos ;
Rathore, Saima ;
Bakas, Spyridon ;
Pati, Sarthak ;
Bergman, Mark ;
Kalarot, Ratheesh ;
Sridharan, Patmaa ;
Gastounioti, Aimilia ;
Jahani, Nariman ;
Cohen, Eric ;
Akbari, Hamed ;
Tunc, Birkan ;
Doshi, Jimit ;
Parker, Drew ;
Hsieh, Michael ;
Sotiras, Aristeidis ;
Li, Hongming ;
Ou, Yangming ;
Doot, Robert K. ;
Bilello, Michel ;
Fan, Yong ;
Shinohara, Russell T. ;
Yushkevich, Paul ;
Verma, Ragini ;
Kontos, Despina .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)
[8]   Presenting Psychiatric and Neurological Symptoms and Signs of Brain Tumors before Diagnosis: A Systematic Review [J].
Ghandour, Fatima ;
Squassina, Alessio ;
Karaky, Racha ;
Diab-Assaf, Mona ;
Fadda, Paola ;
Pisanu, Claudia .
BRAIN SCIENCES, 2021, 11 (03) :1-20
[9]   Small increases in enhancement on MRI may predict survival post radiotherapy in patients with glioblastoma [J].
Gzell, Cecelia Elizabeth ;
Wheeler, Helen R. ;
McCloud, Philip ;
Kastelan, Marina ;
Back, Michael .
JOURNAL OF NEURO-ONCOLOGY, 2016, 128 (01) :67-74
[10]   The ICRU Report 83: Regulation, Documentation and Communication in the fluence of Modulated Photon radiotherapy (MRT) [J].
Hodapp, N. .
STRAHLENTHERAPIE UND ONKOLOGIE, 2012, 188 (01) :97-99