Recent Advancements in the DIII-D Plasma Control System

被引:0
作者
Margo, M. W. [1 ]
Shen, H. [1 ]
Penaflor, B. [1 ]
Sammuli, B. [1 ]
Piglowski, D. [1 ]
Eldon, D. [1 ]
Barr, J. [1 ]
Orozco, D. [1 ]
Anand, H. [1 ]
Moser, A. [1 ]
Cho, E. [1 ]
Pederson, T. [1 ]
Le, J. [1 ]
Lasnier, C. [2 ]
Erickson, K. [3 ]
Reed, R. [3 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
关键词
Algorithm development; machine learning; plasma control;
D O I
10.1109/TPS.2024.3415768
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The plasma control system (PCS) is a critical application required for daily operation of the DIII-D tokamak. Continuous expansion and upgrades to its hardware and software require a careful balance between the need to sustain high operations availability and the introduction of new real-time (RT) acquisition and control schemes. A number of new and improved diagnostics and controls have been added to the PCS. Expansion of the Upper Divertor Viewing (UDV) bolometer diagnostic now covers the tokamak upper divertor region and 8 new UDV channels have been added to the PCS data suite. To improve protection of the vessel, heat-flux and surface temperature control using real time infrared (IRTV) diagnostics have been successfully demonstrated. Neural network models have been added to the system to support experiments in disruption avoidance. In response to the increasing demand for software enhancements during operations, a testbed that closely mirrors the production hardware and software has been recently constructed and commissioned. It significantly increases the variety of testing that can be performed. Therefore, it is now possible to simultaneously operate DIII-D while validating new control algorithms for future experiments. In conjunction with an expansion of regular code reviews, the deployment of the testbed has resulted in greater reliability even with an increasing number and frequency of updates. Details of the specific hardware and software enhancements made along with improvements to testing and software quality assurance will be presented.
引用
收藏
页码:3535 / 3541
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 2023, Open Neural Network Exchange
[2]   Heat flux pattern in detached L-modes and ELM mitigated H-modes with rotating magnetic perturbations in ASDEX Upgrade [J].
Brida, D. ;
Lunt, T. ;
Wischmeier, M. ;
Bernert, M. ;
Carralero, D. ;
Faitsch, M. ;
Feng, Y. ;
Sehmer, T. ;
Sieglin, B. ;
Suttrop, W. ;
Wolfrum, E. .
NUCLEAR FUSION, 2017, 57 (11)
[3]   An analysis of controlled detachment by seeding various impurity species in high performance scenarios on DIII-D and EAST [J].
Eldon, D. ;
Wang, H. Q. ;
Wang, L. ;
Barr, J. ;
Ding, S. ;
Garofalo, A. ;
Gong, X. Z. ;
Guo, H. Y. ;
Jarvinen, A. E. ;
Li, K. D. ;
McClenaghan, J. ;
McLean, A. G. ;
Samuell, C. M. ;
Watkins, J. G. ;
Weisberg, D. ;
Yuan, Q. P. .
NUCLEAR MATERIALS AND ENERGY, 2021, 27 (27)
[4]   Advances in radiated power control at DIII-D [J].
Eldon, D. ;
Kolemen, E. ;
Humphreys, D. A. ;
Hyatt, A. W. ;
Jarvinen, A. E. ;
Leonard, A. W. ;
McLean, A. G. ;
Moser, A. L. ;
Petrie, T. W. ;
Walker, M. L. .
NUCLEAR MATERIALS AND ENERGY, 2019, 18 :285-290
[5]   Suppression of large edge localized modes with edge resonant magnetic fields in high confinment DIII-D plasmas [J].
Evans, TE ;
Moyer, RA ;
Watkins, JG ;
Osborne, TH ;
Thomas, PR ;
Becoulet, M ;
Boedo, JA ;
Doyle, EJ ;
Fenstermacher, ME ;
Finken, KH ;
Groebner, RJ ;
Groth, M ;
Harris, JH ;
Jackson, GL ;
La Haye, RJ ;
Lasnier, CJ ;
Masuzaki, S ;
Ohyabu, N ;
Pretty, DG ;
Reimerdes, H ;
Rhodes, TL ;
Rudakov, DL ;
Schaffer, MJ ;
Wade, MR ;
Wang, G ;
West, WP ;
Zeng, L .
NUCLEAR FUSION, 2005, 45 (07) :595-607
[6]   2D TOMOGRAPHY WITH BOLOMETRY IN DIII-D [J].
LEONARD, AW ;
MEYER, WH ;
GEER, B ;
BEHNE, DM ;
HILL, DN .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (02) :1201-1204
[7]   Plasma detachment in JET Mark I divertor experiments [J].
Loarte, A ;
Monk, RD ;
Martin-Solis, JR ;
Campbell, DJ ;
Chankin, AV ;
Clement, S ;
Davies, SJ ;
Ehrenberg, J ;
Erents, SK ;
Guo, HY ;
Harbour, PJ ;
Horton, LD ;
Ingesson, LC ;
Jackel, H ;
Lingertat, J ;
Lowry, CG ;
Maggi, CF ;
Matthews, GF ;
McCormick, K ;
O'Brien, DP ;
Reichle, R ;
Saibene, G ;
Smith, RJ ;
Stamp, MF ;
Stork, D ;
Vlases, GC .
NUCLEAR FUSION, 1998, 38 (03) :331-371
[8]   Current State of DIII-D Plasma Control System [J].
Margo, M. ;
Penaflor, B. ;
Shen, H. ;
Ferron, J. ;
Piglowski, D. ;
Nguyen, P. ;
Rauch, J. ;
Clement, M. ;
Battey, A. ;
Rea, C. .
FUSION ENGINEERING AND DESIGN, 2020, 150
[9]   Neural Network-Based Confinement Mode Prediction for Real-Time Disruption Avoidance [J].
Orozco, David ;
Sammuli, Brian ;
Barr, Jayson ;
Welner, William ;
Humphreys, David .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (11) :4157-4164
[10]  
Rotem N, 2019, Arxiv, DOI [arXiv:1805.00907, DOI 10.48550/ARXIV.1805.00907]