Estimation of spatial demographic maps from polymorphism data using a neural network

被引:2
作者
Smith, Chris C. R. [1 ]
Patterson, Gilia [1 ]
Ralph, Peter L. [1 ]
Kern, Andrew D. [1 ]
机构
[1] Univ Oregon, Inst Ecol & Evolut, Eugene, OR 97403 USA
基金
美国国家卫生研究院;
关键词
conservation genetics; ecological genetics; machine learning; population genetics; wildlife management; GENETIC CONSEQUENCES; EXPLICIT MODELS; POPULATION-SIZE; IDENTITY; DISPERSAL; HISTORY; LANDSCAPE;
D O I
10.1111/1755-0998.14005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A fundamental goal in population genetics is to understand how variation is arrayed over natural landscapes. From first principles we know that common features such as heterogeneous population densities and barriers to dispersal should shape genetic variation over space, however there are few tools currently available that can deal with these ubiquitous complexities. Geographically referenced single nucleotide polymorphism (SNP) data are increasingly accessible, presenting an opportunity to study genetic variation across geographic space in myriad species. We present a new inference method that uses geo-referenced SNPs and a deep neural network to estimate spatially heterogeneous maps of population density and dispersal rate. Our neural network trains on simulated input and output pairings, where the input consists of genotypes and sampling locations generated from a continuous space population genetic simulator, and the output is a map of the true demographic parameters. We benchmark our tool against existing methods and discuss qualitative differences between the different approaches; in particular, our program is unique because it infers the magnitude of both dispersal and density as well as their variation over the landscape, and it does so using SNP data. Similar methods are constrained to estimating relative migration rates, or require identity-by-descent blocks as input. We applied our tool to empirical data from North American grey wolves, for which it estimated mostly reasonable demographic parameters, but was affected by incomplete spatial sampling. Genetic based methods like ours complement other, direct methods for estimating past and present demography, and we believe will serve as valuable tools for applications in conservation, ecology and evolutionary biology. An open source software package implementing our method is available from .
引用
收藏
页数:17
相关论文
共 51 条
[1]  
Abadi Martin, 2016, Proceedings of OSDI '16: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI '16, P265
[2]   Beyond Biodiversity: Can Environmental DNA (eDNA) Cut It as a Population Genetics Tool? [J].
Adams, Clare I. M. ;
Knapp, Michael ;
Gemmell, Neil J. ;
Jeunen, Gert-Jan ;
Bunce, Michael ;
Lamare, Miles D. ;
Taylor, Helen R. .
GENES, 2019, 10 (03)
[3]   Predicting the Landscape of Recombination Using Deep Learning [J].
Adrion, Jeffrey R. ;
Galloway, Jared G. ;
Kern, Andrew D. .
MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (06) :1790-1808
[4]   Estimating recent migration and population-size surfaces [J].
Al-Asadi, Hussein ;
Petkova, Desislava ;
Stephens, Matthew ;
Novembre, John .
PLOS GENETICS, 2019, 15 (01)
[5]   Detecting and analysing intraspecific genetic variation with eDNA: From population genetics to species abundance [J].
Andres, Kara J. ;
Lodge, David M. ;
Sethi, Suresh A. ;
Andres, Jose .
MOLECULAR ECOLOGY, 2023, 32 (15) :4118-4132
[6]   Does dispersal make the heart grow bolder? Avoidance of anthropogenic habitat elements across wolf life history [J].
Barry, Timothy ;
Gurarie, Eliezer ;
Cheraghi, Farid ;
Kojola, Ilpo ;
Fagan, William F. .
ANIMAL BEHAVIOUR, 2020, 166 :219-231
[7]   Space is the Place: Effects of Continuous Spatial Structure on Analysis of Population Genetic Data [J].
Battey, C. J. ;
Ralph, Peter L. ;
Kern, Andrew D. .
GENETICS, 2020, 215 (01) :193-214
[8]   Predicting geographic location from genetic variation with deep neural networks [J].
Battey, C. J. ;
Ralph, Peter L. ;
Kern, Andrew D. .
ELIFE, 2020, 9 :1-22
[9]   Efficient ancestry and mutation simulation with msprime 1.0 [J].
Baumdicker, Franz ;
Bisschop, Gertjan ;
Goldstein, Daniel ;
Gower, Graham ;
Ragsdale, Aaron P. ;
Tsambos, Georgia ;
Zhu, Sha ;
Eldon, Bjarki ;
Ellerman, E. Castedo ;
Galloway, Jared G. ;
Gladstein, Ariella L. ;
Gorjanc, Gregor ;
Guo, Bing ;
Jeffery, Ben ;
Kretzschumar, Warren W. ;
Lohse, Konrad ;
Matschiner, Michael ;
Nelson, Dominic ;
Pope, Nathaniel S. ;
Quinto-Cortes, Consuelo D. ;
Rodrigues, Murillo F. ;
Saunack, Kumar ;
Sellinger, Thibaut ;
Thornton, Kevin ;
van Kemenade, Hugo ;
Wohns, Anthony W. ;
Wong, Yan ;
Gravel, Simon ;
Kern, Andrew D. ;
Koskela, Jere ;
Ralph, Peter L. ;
Kelleher, Jerome .
GENETICS, 2022, 220 (03)
[10]   Grey wolf genomic history reveals a dual ancestry of dogs [J].
Bergstrom, Anders ;
Stanton, David W. G. ;
Taron, Ulrike H. ;
Frantz, Laurent ;
Sinding, Mikkel-Holger S. ;
Ersmark, Erik ;
Pfrengle, Saskia ;
Cassatt-Johnstone, Molly ;
Lebrasseur, Ophelie ;
Girdland-Flink, Linus ;
Fernandes, Daniel M. ;
Ollivier, Morgane ;
Speidel, Leo ;
Gopalakrishnan, Shyam ;
Westbury, Michael V. ;
Ramos-Madrigal, Jazmin ;
Feuerborn, Tatiana R. ;
Reiter, Ella ;
Gretzinger, Joscha ;
Muenzel, Susanne C. ;
Swali, Pooja ;
Conard, Nicholas J. ;
Caroe, Christian ;
Haile, James ;
Linderholm, Anna ;
Androsov, Semyon ;
Barnes, Ian ;
Baumann, Chris ;
Benecke, Norbert ;
Bocherens, Herve ;
Brace, Selina ;
Carden, Ruth F. ;
Drucker, Dorothee G. ;
Fedorov, Sergey ;
Gasparik, Mihaly ;
Germonpre, Mietje ;
Grigoriev, Semyon ;
Groves, Pam ;
Hertwig, Stefan T. ;
Ivanova, Varvara V. ;
Janssens, Luc ;
Jennings, Richard P. ;
Kasparov, Aleksei K. ;
Kirillova, Irina V. ;
Kurmaniyazov, Islam ;
Kuzmin, Yaroslav V. ;
Kosintsev, Pavel A. ;
Laznickova-Galetova, Martina ;
Leduc, Charlotte ;
Nikolskiy, Pavel .
NATURE, 2022, 607 (7918) :313-+