Semi-supervised medical image segmentation via cross teaching between MobileNet and MobileViT

被引:2
作者
Yang, Yuan [1 ,2 ,3 ]
Zhang, Lin [1 ,2 ,3 ]
Ren, Lei [1 ,2 ,3 ]
机构
[1] Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med & Engn, 37 Xueyuan Rd, Beijing, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Big Data Based Precis Med, 37 Xueyuan Rd, Beijing, Peoples R China
[3] Beihang Univ, Sch Automat Sci & Elect Engn, 37 Xueyuan Rd, Beijing, Peoples R China
关键词
Segmentation; Semi-supervised learning; MobileViT; Cross teaching;
D O I
10.1016/j.imavis.2024.105196
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep learning methods that use a combination of convolutional neural networks and Transformers have shown excellent results in both completely supervised and semi-supervised medical image segmentation tasks. This study provides a simple and effective framework for semi-supervised medical image segmentation by introducing cross teaching between MobileNet and MobileViT. Specifically, we built two different two-path parallel semantic segmentation networks with MobileNet and MobileViT as the main modules. Cross teaching between MobileNet and MobileViT was performed, in which the prediction of each network was used as a pseudo-label to supervise the training of other networks in a direct end-to-end manner. Finally, experiments on two common benchmark tests showed that the proposed framework was superior to six existing semi-supervised learning methods. This shows that our framework can effectively use unlabeled data to improve the performance and is superior to the latest semi-supervised segmentation method. Codes are available at: github.com/yywbkn /MV2-cross-teaching-MobileViT.
引用
收藏
页数:8
相关论文
共 46 条
[1]  
[Anonymous], 2021, IEEE J. Biomed. Health Inform., V25, P4152
[2]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[3]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[4]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[5]   Three-point I-V spectroscopy deconvolves region-specific degradations in LDMOS transistors [J].
Chen, Yen-Pu ;
Mahajan, Bikram K. ;
Varghese, Dhanoop ;
Krishnan, Srikanth ;
Reddy, Vijay ;
Alam, Muhammad A. .
APPLIED PHYSICS LETTERS, 2021, 119 (12)
[6]   Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis [J].
Cheplygina, Veronika ;
de Bruijne, Marleen ;
Pluim, Josien P. W. .
MEDICAL IMAGE ANALYSIS, 2019, 54 :280-296
[7]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[8]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[9]   Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images [J].
Fan, Deng-Ping ;
Zhou, Tao ;
Ji, Ge-Peng ;
Zhou, Yi ;
Chen, Geng ;
Fu, Huazhu ;
Shen, Jianbing ;
Shao, Ling .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (08) :2626-2637
[10]  
Fan DP, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P698