Phenanthroline-Based Low-Cost and Efficient Small-Molecule Cathode Interfacial Layer Enables High-Performance Inverted Perovskite Solar Cells via Doctor-Blade Coating

被引:1
作者
Du, Yunqiang [1 ]
Chen, Chaoran [2 ]
Zhao, Yushou [1 ]
Wang, Jing [6 ]
Chen, Ziming [3 ]
Lv, Menglan [4 ]
Zhang, Fan [5 ]
Xue, Qifan [3 ]
Guo, Fei [2 ]
Mai, Yaohua [2 ]
Zhang, Bin [1 ,4 ]
机构
[1] Changzhou Univ, Jiangsu Engn Res Ctr Light Elect Heat Energy Conve, Sch Mat Sci & Engn, Changzhou 213164, Peoples R China
[2] Jinan Univ, Inst New Energy Technol, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
[3] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
[4] Guizhou Univ, Sch Chem & Chem Engn, Engn Res Ctr Energy Convers & Storage Technol Guiz, Guiyang 550025, Peoples R China
[5] Ocean Univ China, Fac Informat Sci & Engn, Sch Phys & Optoelect Engn, Qingdao 266100, Peoples R China
[6] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
phenanthroline; cathode interfacial layer; low cost; perovskite solar cells; tandem solarcells; ENHANCED PERFORMANCE; HALIDE PEROVSKITES; STABILITY; 1,10-PHENANTHROLINE; TRANSPORT;
D O I
10.1021/acsami.4c07014
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Perovskite solar cells (PSCs) have recently emerged as highly efficient and cutting-edge photovoltaic technology. In inverted PSCs, challenges are focused on the insufficient interface contact and energy level misalignment between the electron transport layer (ETL) and the metal electrode. Hence, the cathode interfacial layer (CIL) plays a crucial role in regulating energy levels and enabling charge extraction in PSCs. In this study, a low-cost phenanthroline derivative, 4,7-dimethoxy-1,10-phenanthroline (Phen-OMe), is developed as an efficient CIL between the PCBM and Ag electrodes. The incorporation of Phen-OMe not only improves the interfacial contact but also effectively reduces the work function (WF) of the Ag electrode, thus promoting charge dissociation and transport at the interface. Through utilizing a wide-band-gap perovskite with the band gap of 1.77 eV as the active layer by a simple, high-throughput, and low-cost doctor-blade coating process, the power conversion efficiency (PCE) is enhanced significantly from 16.11% of the control device to 18.61% of the device with Phen-OMe as the CIL. Interestingly, Phen-OMe shows a broad application as the CIL in PSCs and tandem solar cells (TSCs), resulting in a boosted efficiency of 22.29% in intermediate-band-gap PSCs and a PCE of 22.05% with a high open-circuit voltage (V-OC) of 2.12 V in the perovskite/organic TSC. This achievement shows that Phen-OMe would be a potential candidate as low-cost and efficient CILs for PSCs.
引用
收藏
页码:52727 / 52738
页数:12
相关论文
共 63 条
[41]   Probing surface dipole effects on perovskite photocurrent hysteresis through in-situ characterization [J].
Ren, Xuecheng ;
Chen, Lu ;
Chen, Zeyu ;
Zhang, Tiansheng ;
Wu, Fan .
MATERIALS LETTERS, 2023, 353
[42]   Assessing the Drawbacks and Benefits of Ion Migration in Lead Halide Perovskites [J].
Sakhatskyi, Kostiantyn ;
John, Rohit Abraham ;
Guerrero, Antonio ;
Tsarev, Sergey ;
Sabisch, Sebastian ;
Das, Tisita ;
Matt, Gebhard J. ;
Yakunin, Sergii ;
Cherniukh, Ihor ;
Kotyrba, Martin ;
Berezovska, Yuliia ;
Bodnarchuk, Maryna I. ;
Chakraborty, Sudip ;
Bisquert, Juan ;
Kovalenko, Maksym V. .
ACS ENERGY LETTERS, 2022, 7 (10) :3401-3414
[43]   Improved Performance and Reliability of p-i-n Perovskite Solar Cells via Doped Metal Oxides [J].
Savva, Achilleas ;
Burgues-Ceballos, Ignasi ;
Choulis, Stelios A. .
ADVANCED ENERGY MATERIALS, 2016, 6 (18)
[44]   Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells [J].
Seo, Jangwon ;
Park, Sangman ;
Kim, Young Chan ;
Jeon, Nam Joong ;
Noh, Jun Hong ;
Yoon, Sung Cheol ;
Seok, Sang Il .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (08) :2642-2646
[45]   Poly(dimethylsiloxane)-block-PM6 Polymer Donors for High-Performance and Mechanically Robust Polymer Solar Cells [J].
Seo, Soodeok ;
Lee, Jin-Woo ;
Kim, Dong Jun ;
Lee, Dongchan ;
Phan, Tan Ngoc-Lan ;
Park, Jinseok ;
Tan, Zhengping ;
Cho, Shinuk ;
Kim, Taek-Soo ;
Kim, Bumjoon J. .
ADVANCED MATERIALS, 2023, 35 (24)
[46]   Interfacial Dipoles Boost Open-Circuit Voltage of Tin Halide Perovskite Solar Cells [J].
Shi, Yuedong ;
Zhu, Zihao ;
Miao, Donghao ;
Ding, Yuchen ;
Mi, Qixi .
ACS ENERGY LETTERS, 2024, 9 (04) :1895-1897
[47]   Design of BCP buffer layer for inverted perovskite solar cells using ideal factor [J].
Shibayama, Naoyuki ;
Kanda, Hiroyuki ;
Kim, Tae Woong ;
Segawa, Hiroshi ;
Ito, Seigo .
APL MATERIALS, 2019, 7 (03)
[48]   Improving Efficiency by Hybrid TiO2 Nanorods with 1,10-Phenanthroline as A Cathode Buffer Layer for Inverted Organic Solar Cells [J].
Sun, Chunming ;
Wu, Yulei ;
Zhang, Wenjun ;
Jiang, Nianquan ;
Jiu, Tonggang ;
Fang, Junfeng .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (02) :739-744
[49]   Highly Efficient Inverted Perovskite Solar Cells with CdSe QDs/LiF Electron Transporting Layer [J].
Tan, Furui ;
Xu, Weizhe ;
Hu, Xiaodong ;
Yu, Ping ;
Zhang, Weifeng .
NANOSCALE RESEARCH LETTERS, 2017, 12
[50]   Enhanced performance and stability of p-i-n perovskite solar cells by utilizing an AIE-active cathode interlayer [J].
Tu, Jin ;
Liu, Cong ;
Fan, Yunhao ;
Liu, Fan ;
Chang, Kai ;
Xu, Zijian ;
Li, Qianqian ;
Chen, Yiwang ;
Li, Zhen .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (26) :15662-15672