A derivative free projection method for the singularities of vector fields with convex constraints on Hadamard manifolds

被引:0
作者
Sahu, D. R. [1 ]
Sharma, Shikher [1 ]
机构
[1] Banaras Hindu Univ, Dept Math, Varanasi, India
关键词
Projection method; line search method; vector field; Hadamard manifold; CONJUGATE-GRADIENT METHOD; PROXIMAL POINT ALGORITHMS; NEWTON METHOD; VARIATIONAL-INEQUALITIES; SEMISMOOTH EQUATIONS; RIEMANNIAN-MANIFOLDS; MONOTONE EQUATIONS; CONVERGENCE; DESCENT;
D O I
10.1080/10556788.2024.2400700
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The objective of this paper is to introduce a derivative free projection method designed to find the singularities of pseudomonotone vector fields with convex constraints on Hadamard manifolds. This innovative approach combines the hyperplane projection method with a novel search direction. The global convergence of the proposed method is established under certain conditions. Our method improves some existing results in the literature on Hadamard manifolds. Additionally, illustrative numerical examples are provided to demonstrate the practical efficacy of our method.
引用
收藏
页数:21
相关论文
共 52 条
  • [1] A Geometric Newton Method for Oja's Vector Field
    Absil, P. -A.
    Ishteva, M.
    De Lathauwer, L.
    Van Huffel, S.
    [J]. NEURAL COMPUTATION, 2009, 21 (05) : 1415 - 1433
  • [2] Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
  • [3] Newton's method on Riemannian manifolds and a geometric model for the human spine
    Adler, RL
    Dedieu, JP
    Margulies, JY
    Martens, M
    Shub, M
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) : 359 - 390
  • [4] AN EXTRAGRADIENT-TYPE ALGORITHM FOR VARIATIONAL INEQUALITY ON HADAMARD MANIFOLDS
    Batista, E. E. A.
    Bento, G. C.
    Ferreira, O. P.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [5] The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space
    Censor, Y.
    Gibali, A.
    Reich, S.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) : 318 - 335
  • [6] Chunhui Chen, 1996, Computational Optimization and Applications, V5, P97, DOI 10.1007/BF00249052
  • [7] Convex- and monotone-transformable mathematical programming problems and a proximal-like point method
    Da Cruz Neto, J. X.
    Ferreira, O. P.
    Perez, L. R. Lucambio
    Nemeth, S. Z.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (01) : 53 - 69
  • [8] A nonlinear conjugate gradient method with a strong global convergence property
    Dai, YH
    Yuan, Y
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) : 177 - 182
  • [9] Newton's method on Riemannian manifolds: covariant alpha theory
    Dedieu, JP
    Priouret, P
    Malajovich, G
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (03) : 395 - 419
  • [10] Dirkse S.P., 1995, Optimization Methods and Software, V5, P319, DOI [10.1080/10556789508805619, DOI 10.1080/10556789508805619]