机构:
Zucker Sch Med Hofstra Northwell, Hempstead, NY 11549 USA
Feinstein Inst Med Res, Ctr Neurosci, Manhasset, NY USAUniv Tennessee, Dept Math, Knoxville, TN USA
Niethammer, Martin
[2
,3
]
论文数: 引用数:
h-index:
机构:
Khojandi, Anahita
[4
]
Ramdhani, Ritesh
论文数: 0引用数: 0
h-index: 0
机构:
Zucker Sch Med Hofstra Northwell, Hempstead, NY 11549 USAUniv Tennessee, Dept Math, Knoxville, TN USA
Ramdhani, Ritesh
[2
]
机构:
[1] Univ Tennessee, Dept Math, Knoxville, TN USA
[2] Zucker Sch Med Hofstra Northwell, Hempstead, NY 11549 USA
[3] Feinstein Inst Med Res, Ctr Neurosci, Manhasset, NY USA
[4] Univ Tennessee, Dept Ind & Syst Engn, Knoxville, TN USA
来源:
FRONTIERS IN AGING NEUROSCIENCE
|
2024年
/
16卷
基金:
美国国家卫生研究院;
关键词:
deep brain stimulation;
Parkinson's disease;
machine learning (ML);
gait kinematics;
freezing of gait (FOG);
MOTOR;
D O I:
10.3389/fnagi.2024.1431280
中图分类号:
R592 [老年病学];
C [社会科学总论];
学科分类号:
03 ;
0303 ;
100203 ;
摘要:
Introduction Freezing of gait (FOG) is a paroxysmal motor phenomenon that increases in prevalence as Parkinson's disease (PD) progresses. It is associated with a reduced quality of life and an increased risk of falls in this population. Precision-based detection and classification of freezers are critical to developing tailored treatments rooted in kinematic assessments. Methods This study analyzed instrumented stand-and-walk (SAW) trials from advanced PD patients with STN-DBS. Each patient performed two SAW trials in their OFF Medication-OFF DBS state. For each trial, gait summary statistics from wearable sensors were analyzed by machine learning classification algorithms. These algorithms include k-nearest neighbors, logistic regression, na & iuml;ve Bayes, random forest, and support vector machines (SVM). Each of these models were selected for their high interpretability. Each algorithm was tasked with classifying patients whose SAW trials MDS-UPDRS FOG subscore was non-zero as assessed by a trained movement disorder specialist. These algorithms' performance was evaluated using stratified five-fold cross-validation. Results A total of 21 PD subjects were evaluated (average age 64.24 years, 16 males, mean disease duration of 14 years). Fourteen subjects had freezing of gait in the OFF MED/OFF DBS. All machine learning models achieved statistically similar predictive performance (p < 0.05) with high accuracy. Analysis of random forests' feature estimation revealed the top-ten spatiotemporal predictive features utilized in the model: foot strike angle, coronal range of motion [trunk and lumbar], stride length, gait speed, lateral step variability, and toe-off angle. Conclusion These results indicate that machine learning effectively classifies advanced PD patients as freezers or nonfreezers based on SAW trials in their non-medicated/non-stimulated condition. The machine learning models, specifically random forests, not only rely on but utilize salient spatial and temporal gait features for FOG classification.
引用
收藏
页数:6
相关论文
共 34 条
[1]
Agresti A., 2013, Categorical Data Analysis, Vthird
机构:
IRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Albani, Giovanni
;
Cimolin, Veronica
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dept Elect Informat & Bioengn, Milan, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Cimolin, Veronica
;
论文数: 引用数:
h-index:
机构:
Fasano, Alfonso
;
Trotti, Claudio
论文数: 0引用数: 0
h-index: 0
机构:
IRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Trotti, Claudio
;
Galli, Manuela
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
Tosinvest Sanita, IRCCS San Raffaele Pisana, Rome, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Galli, Manuela
;
Mauro, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
IRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Univ Turin, Rita Levi Montalcini Dept Neurocience, Turin, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
机构:
IRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Albani, Giovanni
;
Cimolin, Veronica
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dept Elect Informat & Bioengn, Milan, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Cimolin, Veronica
;
论文数: 引用数:
h-index:
机构:
Fasano, Alfonso
;
Trotti, Claudio
论文数: 0引用数: 0
h-index: 0
机构:
IRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Trotti, Claudio
;
Galli, Manuela
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dept Elect Informat & Bioengn, Milan, Italy
Tosinvest Sanita, IRCCS San Raffaele Pisana, Rome, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Galli, Manuela
;
Mauro, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
IRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy
Univ Turin, Rita Levi Montalcini Dept Neurocience, Turin, ItalyIRCCS, Div Neurol & Neurorehabil, Osped San Giuseppe, Ist Auxol Italiano, Oggebbio, Verbania, Italy