Improving prediction models of amyotrophic lateral sclerosis (ALS) using polygenic, pre-existing conditions, and survey-based risk scores in the UK Biobank

被引:0
作者
Jin, Weijia [1 ]
Boss, Jonathan [2 ,3 ]
Bakulski, Kelly M. [4 ]
Goutman, Stephen A. [5 ]
Feldman, Eva L. [5 ]
Fritsche, Lars G. [2 ,3 ]
Mukherjee, Bhramar [2 ,3 ,4 ,6 ]
机构
[1] Univ Florida, Dept Biostat, Gainesville, FL 32603 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Precis Hlth Data Sci, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Neurol, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Michigan Inst Data Sci, Ann Arbor, MI 48109 USA
关键词
Amyotrophic lateral sclerosis (ALS); Polygenic risk scores; Phenotypic risk scores; UK biobank;
D O I
10.1007/s00415-024-12644-2
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and objectivesAmyotrophic lateral sclerosis (ALS) causes profound impairments in neurological function, and a cure for this devastating disease remains elusive. This study aimed to identify pre-disposing genetic, phenotypic, and exposure-related factors for amyotrophic lateral sclerosis using multi-modal data and assess their joint predictive potential.MethodsUtilizing data from the UK (United Kingdom) Biobank, we analyzed an unrelated set of 292 ALS cases and 408,831 controls of European descent. Two polygenic risk scores (PRS) are constructed: "GWAS Hits PRS" and "PRS-CS," reflecting oligogenic and polygenic ALS risk profiles, respectively. Time-restricted phenome-wide association studies (PheWAS) were performed to identify pre-existing conditions increasing ALS risk, integrated into phenotypic risk scores (PheRS). A poly-exposure score ("PXS") captures the influence of environmental exposures measured through survey questionnaires. We evaluate the performance of these scores for predicting ALS incidence and stratifying risk, adjusting for baseline demographic covariates.ResultsBoth PRSs modestly predicted ALS diagnosis but with increased predictive power when combined (covariate-adjusted receiver operating characteristic [AAUC] = 0.584 [0.525, 0.639]). PheRS incorporated diagnoses 1 year before ALS onset (PheRS1) modestly discriminated cases from controls (AAUC = 0.515 [0.472, 0.564]). The "PXS" did not significantly predict ALS. However, a model incorporating PRSs and PheRS1 improved the prediction of ALS (AAUC = 0.604 [0.547, 0.667]), outperforming a model combining all risk scores. This combined risk score identified the top 10% of risk score distribution with a fourfold higher ALS risk (95% CI [2.04, 7.73]) versus those in the 40%-60% range.DiscussionBy leveraging UK Biobank data, our study uncovers pre-disposing ALS factors, highlighting the improved effectiveness of multi-factorial prediction models to identify individuals at highest risk for ALS.
引用
收藏
页码:6923 / 6934
页数:12
相关论文
共 52 条
[1]   Identifying large sets of unrelated individuals and unrelated markers [J].
Abraham, Kuruvilla Joseph ;
Diaz, Clara .
SOURCE CODE FOR BIOLOGY AND MEDICINE, 2014, 9 (01)
[2]   Neurofilament light: A candidate biomarker of presymptomatic amyotrophic lateral sclerosis and phenoconversion [J].
Benatar, Michael ;
Wuu, Joanne ;
Andersen, Peter M. ;
Lombardi, Vittoria ;
Malaspina, Andrea .
ANNALS OF NEUROLOGY, 2018, 84 (01) :130-139
[3]   Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease [J].
Bennett, Seth A. ;
Tanaz, Royena ;
Cobos, Samantha N. ;
Torrente, Mariana P. .
TRANSLATIONAL RESEARCH, 2019, 204 :19-30
[4]  
Bycroft C., 2017, BIORXIV, V12, pe1001779
[5]   The UK Biobank resource with deep phenotyping and genomic data [J].
Bycroft, Clare ;
Freeman, Colin ;
Petkova, Desislava ;
Band, Gavin ;
Elliott, Lloyd T. ;
Sharp, Kevin ;
Motyer, Allan ;
Vukcevic, Damjan ;
Delaneau, Olivier ;
O'Connell, Jared ;
Cortes, Adrian ;
Welsh, Samantha ;
Young, Alan ;
Effingham, Mark ;
McVean, Gil ;
Leslie, Stephen ;
Allen, Naomi ;
Donnelly, Peter ;
Marchini, Jonathan .
NATURE, 2018, 562 (7726) :203-+
[6]   Incidence of amyotrophic lateral sclerosis in older adults [J].
Camacho-Soto, Alejandra ;
Nielsen, Susan Searles ;
Faust, Irene M. ;
Bucelli, Robert C. ;
Miller, Timothy M. ;
Racette, Brad A. .
MUSCLE & NERVE, 2022, 66 (03) :289-296
[7]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[8]   PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations [J].
Denny, Joshua C. ;
Ritchie, Marylyn D. ;
Basford, Melissa A. ;
Pulley, Jill M. ;
Bastarache, Lisa ;
Brown-Gentry, Kristin ;
Wang, Deede ;
Masys, Dan R. ;
Roden, Dan M. ;
Crawford, Dana C. .
BIOINFORMATICS, 2010, 26 (09) :1205-1210
[9]   Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis [J].
Dorst, Johannes ;
Ludolph, Albert C. ;
Huebers, Annemarie .
THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2017, 11 :1-16
[10]   Cumulative Genetic Score and C9orf72 Repeat Status Independently Contribute to Amyotrophic Lateral Sclerosis Risk in 2 Case-Control Studies [J].
Dou, John ;
Bakulski, Kelly ;
Guo, Kai ;
Hur, Junguk ;
Zhao, Lili ;
Saez-Atienzar, Sara ;
Stark, Ali ;
Chia, Ruth ;
Garcia-Redondo, Alberto ;
Rojas-Garcia, Ricardo ;
Costa, Juan Francisco Vazquez ;
Santiago, Ruben Fernandez ;
Bandres-Ciga, Sara ;
Gomez-Garre, Pilar ;
Perinan, Maria Teresa ;
Mir, Pablo ;
Perez-Tur, Jordi ;
Cardona, Fernando ;
Menendez-Gonzalez, Manuel ;
Riancho, Javier ;
Borrego-Hernandez, Daniel ;
Galan-Davila, Lucia ;
Ceberio, Jon Infante ;
Pastor, Pau ;
Paradas, Carmen ;
Dols-Icardo, Oriol ;
Traynor, Bryan J. ;
Feldman, Eva L. ;
Goutman, Stephen A. .
NEUROLOGY-GENETICS, 2023, 9 (04)