Wave Hedges distance-based feature fusion and hybrid optimization-enabled deep learning for cyber credit card fraud detection

被引:0
|
作者
Ganji, Venkata Ratnam [1 ]
Chaparala, Aparna [2 ]
机构
[1] Acharya Nagarjuna Univ, Dept Comp Sci & Engn, Guntur, Andhra Pradesh, India
[2] RVR & JC Coll Engn, Dept Comp Sci & Engn, Guntur, Andhra Pradesh, India
关键词
ZFNet; Deep neuro-fuzzy network; Bootstrap; Decimal scaling; Credit card frauds; IMBALANCED CLASSIFICATION;
D O I
10.1007/s10115-024-02177-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the emerging trend in e-commerce, an increasing number of people have adopted cashless payment methods, especially credit cards for buying products online. However, this ever-rising usage of credit cards has also led to an increase in the malicious users attempting to gain financial profits by committing fraudulent activities resulting in huge losses to the card issuer as well as the customer. Credit Card Frauds (CCFs) are pervasive worldwide, and so efficient methods are required to detect CCFs to minimize financial losses. This research presents an efficient CCF Detection (CCFD) approach based on Deep Learning. In this work, CCFD is performed based on the features obtained from the credit card fused based on Wave Hedge distance, and the Wave Hedge coefficient utilized for fusion is estimated using the Deep Neuro-Fuzzy Network. Further, detection is performed using the Zeiler and Fergus Network (ZFNet), whose trainable factors are adjusted using the Dwarf Mongoose-Shuffled Shepherd Political Optimization (DMSSPO) algorithm. Moreover, the DMSSPO_ZFNet is analyzed based on accuracy, sensitivity, and specificity, and the experimental outcomes reveal that the values attained are 0.961, 0.961, and 0.951.
引用
收藏
页码:7005 / 7030
页数:26
相关论文
共 50 条
  • [1] A Hybrid Deep Learning Ensemble Model for Credit Card Fraud Detection
    Ileberi, Emmanuel
    Sun, Yanxia
    IEEE ACCESS, 2024, 12 : 175829 - 175838
  • [2] Credit Card Fraud Detection Based on Machine and Deep Learning
    Najadat, Hassan
    Altiti, Ola
    Abu Aqouleh, Ayah
    Younes, Mutaz
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 204 - 208
  • [3] Deep learning-based credit card fraud detection in federated learning
    Reddy, Vadisena Venkata Krishna
    Reddy, Radha Vijaya Kumar
    Munaga, Masthan Siva Krishna
    Karnam, Balaji
    Maddila, Suresh Kumar
    Kolli, Chandra Sekhar
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [4] A Machine Learning Method with Hybrid Feature Selection for Improved Credit Card Fraud Detection
    Mienye, Ibomoiye Domor
    Sun, Yanxia
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [5] A systematic review of literature on credit card cyber fraud detection using machine and deep learning
    Btoush, Eyad Abdel Latif Marazqah
    Zhou, Xujuan
    Gururajan, Raj
    Chan, Ka Ching
    Genrich, Rohan
    Sankaran, Prema
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [6] Hybrid Optimization-Enabled Deep Learning for Indoor Object Detection and Distance Estimation to Assist Visually Impaired Persons
    Nagarajan, Anandh
    Gopinath, M. P.
    ADVANCES IN ENGINEERING SOFTWARE, 2023, 176
  • [7] A systematic review of literature on credit card cyber fraud detection using machine and deep learning
    Btoush E.A.L.M.
    Zhou X.
    Gururajan R.
    Chan K.C.
    Genrich R.
    Sankaran P.
    PeerJ Computer Science, 2023, 9
  • [8] A Hybrid Deep Learning Approach with Generative Adversarial Network for Credit Card Fraud Detection
    Mienye, Ibomoiye Domor
    Swart, Theo G.
    TECHNOLOGIES, 2024, 12 (10)
  • [9] Shuffled shepherd political optimization-based deep learning method for credit card fraud detection
    Ganji, Venkata Ratnam
    Chaparala, Aparna
    Sajja, Radhika
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (10):
  • [10] Wrapper-Based Feature Selection and Optimization-Enabled Hybrid Deep Learning Framework for Stock Market Prediction
    Patil, Pankaj Rambhau
    Parasar, Deepa
    Charhate, Shrikant
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2024, 23 (01) : 475 - 500