Application of Dimension Truncation Error Analysis to High-Dimensional Function Approximation in Uncertainty Quantification

被引:0
作者
Guth, Philipp A. [1 ]
Kaarnioja, Vesa [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
[2] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, D-14195 Berlin, Germany
来源
MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022 | 2024年 / 460卷
关键词
Dimension truncation; Function approximation; Uncertainty quantification; Partial differential equation; Random coefficient; PARTIAL-DIFFERENTIAL-EQUATIONS; INTEGRATION;
D O I
10.1007/978-3-031-59762-6_14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Parametric mathematical models such as parameterizations of partial differential equations with random coefficients have received a lot of attention within the field of uncertainty quantification. The model uncertainties are often represented via a series expansion in terms of the parametric variables. In practice, this series expansion needs to be truncated to a finite number of terms, introducing a dimension truncation error to the numerical simulation of a parametric mathematical model. There have been several studies of the dimension truncation error corresponding to different models of the input random field in recent years, but many of these analyses have been carried out within the context of numerical integration. In this paper, we study the L-2 dimension truncation error of the parametric model problem. Estimates of this kind arise in the assessment of the dimension truncation error for function approximation in high dimensions. In addition, we show that the dimension truncation error rate is invariant with respect to certain transformations of the parametric variables. Numerical results are presented which showcase the sharpness of the theoretical results.
引用
收藏
页码:297 / 312
页数:16
相关论文
共 28 条
[11]   Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions [J].
Grohs, Philipp ;
Herrmann, Lukas .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (03) :2055-2082
[12]   GENERALIZED DIMENSION TRUNCATION ERROR ANALYSIS FOR HIGH-DIMENSIONAL NUMERICAL INTEGRATION: LOGNORMAL SETTING AND BEYOND [J].
Guth, Philipp A. ;
Kaarnioja, Vesa .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (02) :872-892
[13]   Parabolic PDE-constrained optimal control under uncertainty with entropic risk measure using quasi-Monte Carlo integration [J].
Guth, Philipp A. ;
Kaarnioja, Vesa ;
Kuo, Frances Y. ;
Schillings, Claudia ;
Sloan, Ian H. .
NUMERISCHE MATHEMATIK, 2024, 156 (02) :565-608
[14]   A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty [J].
Guth, Philipp A. ;
Kaarnioja, Vesa ;
Kuo, Frances Y. ;
Schillings, Claudia ;
Sloan, Ian H. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02) :354-383
[15]   Uncertainty quantification for random domains using periodic random variables [J].
Hakula, Harri ;
Harbrecht, Helmut ;
Kaarnioja, Vesa ;
Kuo, Frances Y. ;
Sloan, Ian H. .
NUMERISCHE MATHEMATIK, 2024, 156 (01) :273-317
[16]   QUASI-MONTE CARLO BAYESIAN ESTIMATION UNDER BESOV PRIORS IN ELLIPTIC INVERSE PROBLEMS [J].
Herrmann, Lukas ;
Keller, Magdalena ;
Schwab, Christoph .
MATHEMATICS OF COMPUTATION, 2021, 90 (330) :1831-1860
[17]   UNCERTAINTY QUANTIFICATION USING PERIODIC RANDOM VARIABLES [J].
Kaarnioja, V. ;
Kuo, F. Y. ;
Sloan, I. H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (02) :1068-1091
[18]   Fast approximation by periodic kernel-based lattice-point interpolation with application in uncertainty quantification [J].
Kaarnioja, Vesa ;
Kazashi, Yoshihito ;
Kuo, Frances Y. ;
Nobile, Fabio ;
Sloan, Ian H. .
NUMERISCHE MATHEMATIK, 2022, 150 (01) :33-77
[19]   LOW-RANK TENSOR KRYLOV SUBSPACE METHODS FOR PARAMETRIZED LINEAR SYSTEMS [J].
Kressner, Daniel ;
Tobler, Christine .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) :1288-1316
[20]   Infinite-dimensional integration and the multivariate decomposition method [J].
Kuo, F. Y. ;
Nuyens, D. ;
Plaskota, L. ;
Sloan, I. H. ;
Wasilkowski, G. W. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 326 :217-234