Application of Dimension Truncation Error Analysis to High-Dimensional Function Approximation in Uncertainty Quantification

被引:0
作者
Guth, Philipp A. [1 ]
Kaarnioja, Vesa [2 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
[2] Free Univ Berlin, Dept Math & Comp Sci, Arnimallee 6, D-14195 Berlin, Germany
来源
MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022 | 2024年 / 460卷
关键词
Dimension truncation; Function approximation; Uncertainty quantification; Partial differential equation; Random coefficient; PARTIAL-DIFFERENTIAL-EQUATIONS; INTEGRATION;
D O I
10.1007/978-3-031-59762-6_14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Parametric mathematical models such as parameterizations of partial differential equations with random coefficients have received a lot of attention within the field of uncertainty quantification. The model uncertainties are often represented via a series expansion in terms of the parametric variables. In practice, this series expansion needs to be truncated to a finite number of terms, introducing a dimension truncation error to the numerical simulation of a parametric mathematical model. There have been several studies of the dimension truncation error corresponding to different models of the input random field in recent years, but many of these analyses have been carried out within the context of numerical integration. In this paper, we study the L-2 dimension truncation error of the parametric model problem. Estimates of this kind arise in the assessment of the dimension truncation error for function approximation in high dimensions. In addition, we show that the dimension truncation error rate is invariant with respect to certain transformations of the parametric variables. Numerical results are presented which showcase the sharpness of the theoretical results.
引用
收藏
页码:297 / 312
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 2018, Monte Carlo and Quasi-Monte Carlo Methods, DOI DOI 10.1007/978-3-319-91436-713
[2]  
[Anonymous], 1974, Measure Theory
[3]   Parametric PDEs: sparse or low-rank approximations? [J].
Bachmayr, Markus ;
Cohen, Albert ;
Dahmen, Wolfgang .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) :1661-1708
[4]  
Bhattacharya K., 2021, SMAI J. Comput. Math., V7, P121
[5]   STRONG AND WEAK ERROR ESTIMATES FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS [J].
Charrier, Julia .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (01) :216-246
[6]   Solving and learning nonlinear PDEs with Gaussian processes [J].
Chen, Yifan ;
Hosseini, Bamdad ;
Owhadi, Houman ;
Stuart, Andrew M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 447
[7]   Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs [J].
Cohen, Albert ;
DeVore, Ronald ;
Schwab, Christoph .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (06) :615-646
[8]   Higher order Quasi-Monte Carlo integration for Bayesian PDE Inversion [J].
Dick, Josef ;
Gantner, Robert N. ;
Le Gia, Quoc T. ;
Schwab, Christoph .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (01) :144-172
[9]   Numerical Solution of the Parametric Diffusion Equation by Deep Neural Networks [J].
Geist, Moritz ;
Petersen, Philipp ;
Raslan, Mones ;
Schneider, Reinhold ;
Kutyniok, Gitta .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (01)
[10]   Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients [J].
Gilbert, A. D. ;
Graham, I. G. ;
Kuo, F. Y. ;
Scheichl, R. ;
Sloan, I. H. .
NUMERISCHE MATHEMATIK, 2019, 142 (04) :863-915