Development of a High-Sensitivity Millimeter-Wave Radar Imaging System for Non-Destructive Testing

被引:1
作者
Murakami, Hironaru [1 ]
Fukuda, Taiga [1 ]
Otera, Hiroshi [1 ]
Kamo, Hiroyuki [2 ]
Miyoshi, Akito [2 ]
机构
[1] Osaka Univ, Inst Laser Engn, 2-6 Yamadaoka, Osaka 5650871, Japan
[2] TAIYO YUDEN CO LTD, 8-1 Sakaemachi, Gunma 3708522, Japan
关键词
millimeter wave; SAR; MIMO; imaging; NDT; radar module; MICROWAVE; CRACKS;
D O I
10.3390/s24154781
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
There is an urgent need to develop non-destructive testing (NDT) methods for infrastructure facilities and residences, etc., where human lives are at stake, to prevent collapse due to aging or natural disasters such as earthquakes before they occur. In such inspections, it is desirable to develop a remote, non-contact, non-destructive inspection method that can inspect cracks as small as 0.1 mm on the surface of a structure and damage inside and on the surface of the structure that cannot be seen by the human eye with high sensitivity, while ensuring the safety of the engineers inspecting the structure. Based on this perspective, we developed a radar module (absolute gain of the transmitting antenna: 13.5 dB; absolute gain of the receiving antenna: 14.5 dB) with very high directivity and minimal loss in the signal transmission path between the radar chip and the array antenna, using our previously developed technology. A single-input, multiple-output (SIMO) synthetic aperture radar (SAR) imaging system was developed using this module. As a result of various performance evaluations using this system, we were able to demonstrate that this system has a performance that fully satisfies the abovementioned indices. First, the SNR in millimeter-wave (MM-wave) imaging was improved by 5.4 dB compared to the previously constructed imaging system using the IWR1443BOOST EVM, even though the measured distance was 2.66 times longer. As a specific example of the results of measurements on infrastructure facilities, the system successfully observed cracks as small as 0.1 mm in concrete materials hidden under glass fiber-reinforced tape and black acrylic paint. In this case, measurements were also made from a distance of about 3 m to meet the remote observation requirements, but the radar module with its high-directivity and high-gain antenna proved to be more sensitive in detecting crack structures than measurements made from a distance of 780 mm. In order to estimate the penetration length of MM waves into concrete, an experiment was conducted to measure the penetration of MM waves through a thin concrete slab with a thickness of 3.7 mm. As a result, Lambda exp = 6.0 mm was obtained as the attenuation distance of MM waves in the concrete slab used. In addition, transmission measurement experiments using a composite material consisting of ceramic tiles and fireproof board, which is a component of a house, and experiments using composite plywood, which is used as a general housing construction material in Japan, succeeded in making perspective observations of defects in the internal structure, etc., which are invisible to the human eye.
引用
收藏
页数:19
相关论文
共 32 条
[1]  
Adamy D. L., 2001, EW 101: A First Course in Electronic Warfare Artech House
[2]   Laser lock-in thermography for detection of surface-breaking fatigue cracks on uncoated steel structures [J].
An, Yun-Kyu ;
Kim, Ji Min ;
Sohn, Hoon .
NDT & E INTERNATIONAL, 2014, 65 :54-63
[3]  
Aoki Yutaka, 2023, 2023 IEEE/MTT-S International Microwave Symposium - IMS 2023, P656, DOI 10.1109/IMS37964.2023.10188132
[4]   Surface crack detection in welds using thermography [J].
Broberg, Patrik .
NDT & E INTERNATIONAL, 2013, 57 :69-73
[5]  
Costanzo S, 2011, RADIOENGINEERING, V20, P785
[6]   A Review of Synthetic-Aperture Radar Image Formation Algorithms and Implementations: A Computational Perspective [J].
Cruz, Helena ;
Vestias, Mario ;
Monteiro, Jose ;
Neto, Horacio ;
Duarte, Rui Policarpo .
REMOTE SENSING, 2022, 14 (05)
[7]   Frequency dependence of dielectric constant of construction materials in microwave and millimeter-wave bands [J].
Cuiñas, I ;
Pugliese, JP ;
Hammoudeh, A ;
Sánchez, MG .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 30 (02) :123-124
[8]   Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing [J].
Donskoy, D ;
Sutin, A ;
Ekimov, A .
NDT & E INTERNATIONAL, 2001, 34 (04) :231-238
[9]   An analytically based computer model for surface measurements in ultrasonic crack detection [J].
Glushkov, Evgeny ;
Glushkova, Natalia ;
Ekhlakov, Alexander ;
Shapar, Elena .
WAVE MOTION, 2006, 43 (06) :458-473
[10]   Improvement of Detection in Concrete Surface Cracks Covered with Paper by Using Standing Wave of 77-GHz-Band Millimeter-Wave [J].
Hirata, Akihiko ;
Nakashizuka, Makoto ;
Suizu, Koji ;
Sudo, Yoshikazu .
2019 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2019, :297-300