Comparative studies of machine learning models for predicting higher heating values of biomass

被引:5
作者
Adeleke, Adekunle A. [1 ]
Adedigba, Adeyinka [2 ]
Adeshina, Steve A. [3 ]
Ikubanni, Peter P. [4 ]
Lawal, Mohammed S. [5 ]
Olosho, Adebayo I. [6 ]
Yakubu, Halima S. [7 ]
Ogedengbe, Temitayo S. [1 ]
Nzerem, Petrus [8 ]
Okolie, Jude A. [9 ]
机构
[1] Nile Univ Nigeria, Dept Mech Engn, Abuja, Nigeria
[2] Fed Univ Technol, Dept Mechatron Engn, Minna, Nigeria
[3] Nile Univ Nigeria, Dept Comp Engn, Abuja, Nigeria
[4] Landmark Univ, Dept Mech Engn, Omu Aran, Nigeria
[5] Air Force Inst Technol, Dept Mech Engn, Kaduna, Nigeria
[6] Univ Ilorin, Dept Ind Chem, Ilorin, Nigeria
[7] Nile Univ Nigeria, Dept Eletr & Elect Engn, Abuja, Nigeria
[8] Nile Univ Nigeria, Dept Petr & Gas Engn, Abuja, Nigeria
[9] Univ Oklahoma, Gallogly Coll Engn, Norman, OK 73019 USA
来源
DIGITAL CHEMICAL ENGINEERING | 2024年 / 12卷
关键词
Biomass materials; Energy crops; Machine learning; Ultimate analysis; Proximate analysis; Higher heating values;
D O I
10.1016/j.dche.2024.100159
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study addresses the challenge of efficiently determining the higher heating value (HHV) of biomass, a crucial parameter in large-scale biomass-based energy systems. The conventional method of measuring HHV using an oxygen bomb calorimeter is time-consuming, expensive, and less accessible to researchers, particularly in developing nations. To overcome these limitations, we employed four machine learning (ML) models, namely Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost). These models were developed by using proximate and ultimate analysis parameters as input features. Up to 200 datasets were compiled from literature and used for the ML models. Our results demonstrate the effectiveness of all ML models in accurately predicting the HHV of biomass materials. Notably, the XGBoost model exhibited superior performance with the highest R-squared (R2) values for both training (0.9683) and test datasets (0.7309), along with the lowest root mean squared error (RSME) of 0.3558. Key influential input features identified for HHV prediction include carbon (C), volatile matter (Vm), ash, and hydrogen (H). Consequently, this research provides a reliable alternative for predicting HHV without the need for costly and timeintensive experimental measurements, facilitating broader accessibility in biomass energy research.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Sustainability of multifaceted usage of biomass: A review [J].
Adeleke, A. A. ;
Ikubanni, P. P. ;
Orhadahwe, T. A. ;
Christopher, C. T. ;
Akano, J. M. ;
Agboola, O. O. ;
Adegoke, S. O. ;
Balogun, A. O. ;
Ibikunle, R. A. .
HELIYON, 2021, 7 (09)
[2]   The ignitability, fuel ratio and ash fusion temperatures of torrefied woody biomass [J].
Adeleke, A. A. ;
Odusote, J. K. ;
Ikubanni, P. P. ;
Lasode, O. A. ;
Malathi, M. ;
Paswan, D. .
HELIYON, 2020, 6 (03)
[3]   Densification of coal fines and mildly torrefied biomass into composite fuel using different organic binders [J].
Adeleke, A. A. ;
Odusote, J. K. ;
Lasode, O. A. ;
Ikubanni, P. P. ;
Malathi, M. ;
Paswan, D. .
HELIYON, 2019, 5 (07)
[4]   Machine Learning Model for the Evaluation of Biomethane Potential Based on the Biochemical Composition of Biomass [J].
Adeleke, Adekunle A. ;
Okolie, Jude A. ;
Ogbaga, Chukwuma C. ;
Ikubanni, Peter P. ;
Okoye, Patrick U. ;
Akande, Olugbenga .
BIOENERGY RESEARCH, 2024, 17 (01) :731-743
[5]   Bag of Tricks for Improving Deep Learning Performance on Multimodal Image Classification [J].
Adeshina, Steve A. ;
Adedigba, Adeyinka P. .
BIOENGINEERING-BASEL, 2022, 9 (07)
[6]   Data-Driven Machine Learning Approach for Predicting the Higher Heating Value of Different Biomass Classes [J].
Afolabi, Inioluwa Christianah ;
Epelle, Emmanuel, I ;
Gunes, Burcu ;
Gulec, Fatih ;
Okolie, Jude A. .
CLEAN TECHNOLOGIES, 2022, 4 (04) :1227-1241
[7]   Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates [J].
Ajimotokan, H. A. ;
Ehindero, A. O. ;
Ajao, K. S. ;
Adeleke, A. A. ;
Ikubanni, P. P. ;
Shuaib-Babata, Y. L. .
SCIENTIFIC AFRICAN, 2019, 6
[8]   A new method for prediction of air pollution based on intelligent computation [J].
Al-Janabi, Samaher ;
Mohammad, Mustafa ;
Al-Sultan, Ali .
SOFT COMPUTING, 2020, 24 (01) :661-680
[9]   Challenges of plastic waste generation and management in sub-Saharan Africa: A review [J].
Ayeleru, Olusola Olaitan ;
Dlova, Sisanda ;
Akinribide, Ojo Jeremiah ;
Ntuli, Freeman ;
Kupolati, Williams Kehinde ;
Marina, Paula Facal ;
Blencowe, Anton ;
Olubambi, Peter Apata .
WASTE MANAGEMENT, 2020, 110 :24-42
[10]   Physico-chemical characterization, thermal decomposition and kinetic modeling of Digitaria sanguinalis under nitrogen and air environments [J].
Balogun, Ayokunle O. ;
Adeleke, Adekunle A. ;
Ikubanni, Peter P. ;
Adegoke, Samuel O. ;
Alayat, Abdulbaset M. ;
McDonald, Armando G. .
CASE STUDIES IN THERMAL ENGINEERING, 2021, 26