GRCop-42: Comparison between laser powder bed fusion and laser powder direct energy deposition

被引:9
作者
Demeneghi, Gabriel [1 ]
Gradl, Paul [1 ]
Mayeur, Jason R. [2 ]
Hazeli, Kavan [3 ]
机构
[1] NASA, Marshall Space Flight Ctr, Huntsville, AL 35808 USA
[2] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN USA
[3] Univ Arizona, Mech & Aerosp Engn Dept, Tucson, AZ USA
来源
ADDITIVE MANUFACTURING LETTERS | 2024年 / 10卷
关键词
GRCop-42; Copper alloy; L-PBF; LP-DED; Porosity; Surface topography; Microstructure; Texture; Tensile testing; MECHANICAL-PROPERTIES; GRAIN-STRUCTURE; EVOLUTION; MICROSTRUCTURE; COMPONENTS; THICKNESS; BEHAVIOR; FRACTURE; TEXTURE; ALLOY;
D O I
10.1016/j.addlet.2024.100224
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study involves a comparative analysis of additively manufactured GRCop-42 specimens produced using two processes: laser-powder bed fusion (L-PBF) and laser powder direct energy deposition (LP-DED). The investigation characterizes a range of material attributes, including surface topography, internal defects, microstructural features, quasi-static mechanical properties, and fractographic characteristics. The findings demonstrate that, despite the specimens being fabricated with the same base material, the resulting material properties vary significantly between the two additive manufacturing processes. As such, material properties cannot be presumed to be uniform across different manufacturing methods. Consequently, material characterization must be conducted for individual manufacturing processes based on specific parameters.
引用
收藏
页数:10
相关论文
共 50 条
[21]   Anisotropic creep and stress rupture behaviour of laser powder bed fusion processed Hastelloy X [J].
Agrawal, Shavi ;
Kumar, Chandan ;
Avadhani, G. S. ;
Heilmaier, Martin ;
Suwas, Satyam .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 934
[22]   On the process of designing material qualification type specimens manufactured using laser powder bed fusion [J].
Tekerek, Emine ;
Perumal, Vignesh ;
Jacquemetton, Lars ;
Beckett, Darren ;
Halliday, H. Scott ;
Wisner, Brian ;
Kontsos, Antonios .
MATERIALS & DESIGN, 2023, 229
[23]   Compositionally graded AlxCoCrFeNi high-entropy alloy manufactured by laser powder bed fusion [J].
Wei, Fengxia ;
Wei, Siyuan ;
Lau, Kwang Boon ;
Teh, Wei Hock ;
Lee, Jing Jun ;
Seng, Hwee Leng ;
Tan, Cheng Cheh ;
Wang, Pei ;
Ramamurty, Upadrasta .
MATERIALIA, 2022, 21
[24]   Ultrasonic nondestructive evaluation of laser powder bed fusion 316L stainless steel [J].
Kim, Changgong ;
Yin, Houshang ;
Shmatok, Andrii ;
Prorok, Barton C. ;
Lou, Xiaoyuan ;
Matlack, Kathryn H. .
ADDITIVE MANUFACTURING, 2021, 38
[25]   Improving laser powder bed fusion processability of pure Cu through powder functionalization with Ag [J].
Lupi, Giorgia ;
Poulin, Marcello ;
Gobber, Federico ;
Grande, Marco Actis ;
Casati, Riccardo .
POWDER TECHNOLOGY, 2024, 444
[26]   A Tailored AlSiMg Alloy for Laser Powder Bed Fusion [J].
Knoop, Daniel ;
Lutz, Andreas ;
Mais, Bernhard ;
von Hehl, Axel .
METALS, 2020, 10 (04)
[27]   A technical review of the challenges of powder recycling in the laser powder bed fusion additive manufacturing process [J].
Soundarapandiyan, Gowtham ;
Johnston, Carol ;
Khan, Raja H. U. ;
Chen, Bo ;
Fitzpatrick, Michael E. .
JOURNAL OF ENGINEERING-JOE, 2021, 2021 (02) :97-103
[28]   Understanding Laser Powder Bed Fusion Surface Roughness [J].
Snyder, Jacob C. ;
Thole, Karen A. .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (07)
[29]   Microstructures, properties, and thermal expansion of Ni22Cr3 alloy fabricated by laser powder bed fusion [J].
Liu, Deyang ;
Qi, Peng ;
Dong, Zhichao ;
Zhang, Lijuan .
MATERIALS TODAY COMMUNICATIONS, 2025, 42
[30]   Low-Power Laser Powder Bed Fusion Processing of Scalmalloy® [J].
Martucci, Alessandra ;
Aversa, Alberta ;
Manfredi, Diego ;
Bondioli, Federica ;
Biamino, Sara ;
Ugues, Daniele ;
Lombardi, Mariangela ;
Fino, Paolo .
MATERIALS, 2022, 15 (09)