GRCop-42: Comparison between laser powder bed fusion and laser powder direct energy deposition

被引:9
作者
Demeneghi, Gabriel [1 ]
Gradl, Paul [1 ]
Mayeur, Jason R. [2 ]
Hazeli, Kavan [3 ]
机构
[1] NASA, Marshall Space Flight Ctr, Huntsville, AL 35808 USA
[2] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN USA
[3] Univ Arizona, Mech & Aerosp Engn Dept, Tucson, AZ USA
来源
ADDITIVE MANUFACTURING LETTERS | 2024年 / 10卷
关键词
GRCop-42; Copper alloy; L-PBF; LP-DED; Porosity; Surface topography; Microstructure; Texture; Tensile testing; MECHANICAL-PROPERTIES; GRAIN-STRUCTURE; EVOLUTION; MICROSTRUCTURE; COMPONENTS; THICKNESS; BEHAVIOR; FRACTURE; TEXTURE; ALLOY;
D O I
10.1016/j.addlet.2024.100224
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study involves a comparative analysis of additively manufactured GRCop-42 specimens produced using two processes: laser-powder bed fusion (L-PBF) and laser powder direct energy deposition (LP-DED). The investigation characterizes a range of material attributes, including surface topography, internal defects, microstructural features, quasi-static mechanical properties, and fractographic characteristics. The findings demonstrate that, despite the specimens being fabricated with the same base material, the resulting material properties vary significantly between the two additive manufacturing processes. As such, material properties cannot be presumed to be uniform across different manufacturing methods. Consequently, material characterization must be conducted for individual manufacturing processes based on specific parameters.
引用
收藏
页数:10
相关论文
共 52 条
[31]   Influence of interlayer dwell time on the microstructure of Inconel 718 Laser Cladded components [J].
Guevenoux, Camille ;
Hallais, Simon ;
Charles, Alexandre ;
Charkaluk, Eric ;
Constantinescu, Andrei .
OPTICS AND LASER TECHNOLOGY, 2020, 128
[32]   Hall-Petch relation and boundary strengthening [J].
Hansen, N .
SCRIPTA MATERIALIA, 2004, 51 (08) :801-806
[33]   Grain structure evolution in Inconel 718 during selective electron beam melting [J].
Helmer, H. ;
Bauereiss, A. ;
Singer, R. F. ;
Koerner, C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 668 :180-187
[34]   Influence of selective laser melting process parameters on texture evolution in pure copper [J].
Jadhav, S. D. ;
Dadbakhsh, S. ;
Goossens, L. ;
Kruth, J-P ;
Van Humbeeck, J. ;
Vanmeensel, K. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 270 :47-58
[35]   Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing [J].
King, Wayne E. ;
Barth, Holly D. ;
Castillo, Victor M. ;
Gallegos, Gilbert F. ;
Gibbs, John W. ;
Hahn, Douglas E. ;
Kamath, Chandrika ;
Rubenchik, Alexander M. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (12) :2915-2925
[36]  
Kou S., 2003, N. Jersey USA, V431, P223, DOI [10.1557/mrs2003.197, DOI 10.1557/MRS2003.197]
[37]   Fatigue behavior and modeling of additively manufactured IN718: The effect of surface treatments and surface measurement techniques [J].
Lee, Seungjong ;
Shao, Shuai ;
Wells, Douglas N. ;
Zetek, Miroslav ;
Kepka, Miloslav ;
Shamsaei, Nima .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2022, 302
[38]   Improvement of microstructure and property of cold-sprayed Cu-4 at.%Cr-2 at.%Nb alloy by heat treatment [J].
Li, W. -Y. ;
Guo, X. P. ;
Verdy, C. ;
Dembinski, L. ;
Liao, H. L. ;
Coddet, C. .
SCRIPTA MATERIALIA, 2006, 55 (04) :327-330
[39]   Tensile and ductile fracture properties of as-printed 316L stainless steel thin walls obtained by directed energy deposition [J].
Margerit, Pierre ;
Weisz-Patrault, Daniel ;
Ravi-Chandar, Krishnaswamy ;
Constantinescu, Andrei .
ADDITIVE MANUFACTURING, 2021, 37 (37)
[40]   Copper-based alloys for structural high-heat-flux applications: a review of development, properties, and performance of Cu-rich Cu-Cr-Nb alloys [J].
Minneci, Robert P. ;
Lass, Eric A. ;
Bunn, Jeffrey R. ;
Choo, Hahn ;
Rawn, Claudia J. .
INTERNATIONAL MATERIALS REVIEWS, 2021, 66 (06) :394-425