Gusa: Graph-Based Unsupervised Subdomain Adaptation for Cross-Subject EEG Emotion Recognition

被引:11
|
作者
Li, Xiaojun [1 ,2 ,3 ]
Chen, C. L. Philip [1 ,2 ,3 ]
Chen, Bianna [1 ,2 ,3 ]
Zhang, Tong [1 ,2 ,3 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangdong Prov Key Lab Computat Intelligence & Cyb, Guangzhou 510006, Peoples R China
[2] Pazhou Lab, Guangzhou 510335, Peoples R China
[3] Minist Educ Hlth Intelligent Percept & Paralleled, Engn Res Ctr, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Emotion recognition; Brain modeling; Task analysis; Measurement; Convolution; Adaptation models; EEG emotion recognition; subdomain adaptation; graph convolutional neural network; metric learning;
D O I
10.1109/TAFFC.2024.3349770
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
EEG emotion recognition has been hampered by the clear individual differences in the electroencephalogram (EEG). Nowadays, domain adaptation is a good way to deal with this issue because it aligns the distribution of data across subjects. However, the performance for EEG emotion recognition is limited by the existing research, which mainly focuses on the global alignment between the source domain and the target domain and ignores much fine-grained information. In this study, we propose a method called Graph-based Unsupervised Subdomain Adaptation (Gusa), which simultaneously aligns the distribution between the source and target domains in a fine-grained way from both the channel and emotion subdomains. Gusa employs three modules, such as the Node-wise Domain Constraints Module to align each EEG channel and obtain a domain-variant representation, the Class-level Distribution Constraints Module, and the Emotion-wise Domain Constraints Module, to collect more fine-grained information, create more discriminative representations for each emotion, and lessen the impact of noisy emotion labels. The studies on the SEED, SEED-IV, and MPED datasets demonstrate that Gusa significantly improves the ability of EEG to recognize emotions and can extract more granular and discriminative representations for EEG.
引用
收藏
页码:1451 / 1462
页数:12
相关论文
共 50 条
  • [1] A deep subdomain associate adaptation network for cross-session and cross-subject EEG emotion recognition
    Meng, Ming
    Hu, Jiahao
    Gao, Yunyuan
    Kong, Wanzeng
    Luo, Zhizeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [2] Multi-source Selective Graph Domain Adaptation Network for cross-subject EEG emotion recognition
    Wang, Jing
    Ning, Xiaojun
    Xu, Wei
    Li, Yunze
    Jia, Ziyu
    Lin, Youfang
    NEURAL NETWORKS, 2024, 180
  • [3] Adversarial Discriminative Domain Adaptation and Transformers for EEG-based Cross-Subject Emotion Recognition
    Sartipi, Shadi
    Cetin, Mujdat
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [4] Plug-and-Play Domain Adaptation for Cross-Subject EEG-based Emotion Recognition
    Zhao, Li-Ming
    Yan, Xu
    Lu, Bao-Liang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 863 - 870
  • [5] Exploring EEG Features in Cross-Subject Emotion Recognition
    Li, Xiang
    Song, Dawei
    Zhang, Peng
    Zhang, Yazhou
    Hou, Yuexian
    Hu, Bin
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [6] Joint Feature Adaptation and Graph Adaptive Label Propagation for Cross-Subject Emotion Recognition From EEG Signals
    Peng, Yong
    Wang, Wenjuan
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (04) : 1941 - 1958
  • [7] Domain Adaptation for Cross-Subject Emotion Recognition by Subject Clustering
    Liu, Jin
    Shen, Xinke
    Song, Sen
    Zhang, Dan
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 904 - 908
  • [8] Online Cross-subject Emotion Recognition from ECG via Unsupervised Domain Adaptation
    He, Wenwen
    Ye, Yalan
    Li, Yunxia
    Pan, Tongjie
    Lu, Li
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1001 - 1005
  • [9] Cross-Subject EEG Emotion Recognition With Self-Organized Graph Neural Network
    Li, Jingcong
    Li, Shuqi
    Pan, Jiahui
    Wang, Fei
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [10] Multisource Associate Domain Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition
    She, Qingshan
    Zhang, Chenqi
    Fang, Feng
    Ma, Yuliang
    Zhang, Yingchun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72