Significance of plasma p-tau217 in predicting long-term dementia risk in older community residents: Insights from machine learning approaches

被引:0
作者
Xiao, Zhenxu [1 ,2 ,3 ]
Zhou, Xiaowen [1 ,2 ,3 ]
Zhao, Qianhua [1 ,2 ,3 ,4 ]
Cao, Yang [5 ,6 ]
Ding, Ding [1 ,2 ,3 ]
机构
[1] Fudan Univ, Huashan Hosp, Inst Neurol, 12 Wulumuqi Zhong Rd, Shanghai 200040, Peoples R China
[2] Fudan Univ, Huashan Hosp, Natl Clin Res Ctr Aging & Med, Shanghai, Peoples R China
[3] Fudan Univ, Huashan Hosp, Natl Ctr Neurol Disorders, Shanghai, Peoples R China
[4] Fudan Univ, MOE Frontiers Ctr Brain Sci, Shanghai, Peoples R China
[5] Orebro Univ, Fac Med & Hlth, Sch Med Sci, Clin Epidemiol & Biostat, Orebro, Sweden
[6] Karolinska Inst, Inst Environm Med, Unit Integrat Epidemiol, Stockholm, Sweden
基金
中国国家自然科学基金;
关键词
biomarker; cohort; community; dementia; machine learning; model; MILD COGNITIVE IMPAIRMENT; PHOSPHORYLATED TAU 181; ALZHEIMERS-DISEASE; PREVALENCE; VALIDATION;
D O I
10.1002/alz.14178
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
INTRODUCTIONWhether plasma biomarkers play roles in predicting incident dementia among the general population is worth exploring.METHODSA total of 1857 baseline dementia-free older adults with follow-ups up to 13.5 years were included from a community-based cohort. The Recursive Feature Elimination (RFE) algorithm aided in feature selection from 90 candidate predictors to construct logistic regression, naive Bayes, bagged trees, and random forest models. Area under the curve (AUC) was used to assess the model performance for predicting incident dementia.RESULTSDuring the follow-up of 12,716 person-years, 207 participants developed dementia. Four predictive models, incorporated plasma p-tau217, age, and scores of MMSE, STICK, and AVLT, exhibited AUCs ranging from 0.79 to 0.96 in testing datasets. These models maintained robustness across various subgroups and sensitivity analyses.DISCUSSIONPlasma p-tau217 outperforms most traditional variables and may be used to preliminarily screen older individuals at high risk of dementia.Highlights Plasma p-tau217 showed comparable importance with age and cognitive tests in predicting incident dementia among community older adults. Machine learning models combining plasma p-tau217, age, and cognitive tests exhibited excellent performance in predicting incident dementia. The training models demonstrated robustness in subgroup and sensitivity analysis.
引用
收藏
页码:7037 / 7047
页数:11
相关论文
共 51 条
  • [1] American Psychiatric Association, 1994, Diagnostic and statistical manual of mental disorders, DOI DOI 10.1176/APPI.BOOKS.9780890425596
  • [2] Plasma p-tau181, p-tau217, and other blood-based Alzheimer's disease biomarkers in a multi-ethnic, community study
    Brickman, Adam M.
    Manly, Jennifer J.
    Honig, Lawrence S.
    Sanchez, Danurys
    Reyes-Dumeyer, Dolly
    Lantigua, Rafael A.
    Lao, Patrick J.
    Stern, Yaakov
    Vonsattel, Jean Paul
    Teich, Andrew F.
    Airey, David C.
    Proctor, Nicholas Kyle
    Dage, Jeffrey L.
    Mayeux, Richard
    [J]. ALZHEIMERS & DEMENTIA, 2021, 17 (08) : 1353 - 1364
  • [3] A prediction model of cognitive impairment risk in elderly illiterate Chinese women
    Chen, Zhaojing
    Du, Jiaolan
    Song, Qin
    Yang, Jun
    Wu, Yinyin
    [J]. FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
  • [4] Apolipoprotein E e4 Modifies the Effect of Possible Anticholinergic Drugs on Incident Dementia: The Shanghai Aging Study
    Chi, Danyi
    Wu, Wanqing
    Zhao, Qianhua
    Xiao, Zhenxu
    Luo, Jianfeng
    Wang, Bin
    Ding, Ding
    [J]. JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION, 2023, 24 (04) : 526 - 532
  • [5] Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations
    Cullen, Nicholas C.
    Leuzy, Antoine
    Palmqvist, Sebastian
    Janelidze, Shorena
    Stomrud, Erik
    Pesini, Pedro
    Sarasa, Leticia
    Antonio Allue, Jose
    Proctor, Nicholas K.
    Zetterberg, Henrik
    Dage, Jeffrey L.
    Blennow, Kaj
    Mattsson-Carlgren, Niklas
    Hansson, Oskar
    [J]. NATURE AGING, 2021, 1 (01): : 114 - +
  • [6] Dementia Forecasting Collaborators, 2022, LANCET PUBLIC HEALTH, V7, P105, DOI [10.1016/S24682667(21)002498, DOI 10.1016/S24682667(21)002498]
  • [7] Cholesterol profiles and incident cognitive decline among older adults: the Shanghai Aging Study
    Ding, Ding
    Zhou, Fen
    Cao, Yang
    Liang, Xiaoniu
    Wu, Wanqing
    Xiao, Zhenxu
    Zhao, Qianhua
    Deng, Wei
    [J]. AGE AND AGEING, 2021, 50 (02) : 472 - 479
  • [8] Prevalence of mild cognitive impairment in an urban community in China: A cross-sectional analysis of the Shanghai Aging Study
    Ding, Ding
    Zhao, Qianhua
    Guo, Qihao
    Meng, Haijiao
    Wang, Bei
    Luo, Jianfeng
    Mortimer, James A.
    Borenstein, Amy R.
    Hong, Zhen
    [J]. ALZHEIMERS & DEMENTIA, 2015, 11 (03) : 300 - 309
  • [9] The Shanghai Aging Study: Study Design, Baseline Characteristics, and Prevalence of Dementia
    Ding, Ding
    Zhao, Qianhua
    Guo, Qihao
    Meng, Haijiao
    Wang, Bei
    Yu, Peimin
    Luo, Jianfeng
    Zhou, Yan
    Yu, Lirong
    Zheng, Li
    Chu, Shuguang
    Mortimer, James A.
    Borenstein, Amy R.
    Hong, Zhen
    [J]. NEUROEPIDEMIOLOGY, 2014, 43 (02) : 114 - 122
  • [10] Multimodal Machine Learning for 10-Year Dementia Risk Prediction: The Framingham Heart Study
    Ding, Huitong
    Mandapati, Amiya
    Hamel, Alexander P.
    Karjadi, Cody
    Ang, Ting F. A.
    Xia, Weiming
    Au, Rhoda
    Lin, Honghuang
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2023, 96 (01) : 277 - 286