PARTIAL DATA INVERSE PROBLEM FOR HYPERBOLIC EQUATION WITH TIME-DEPENDENT DAMPING COEFFICIENT AND POTENTIAL

被引:0
作者
Liu, Boya [1 ]
Saksala, Teemu [1 ]
Yan, Lili [2 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
inverse problem; time-dependent coefficients; wave equation on manifold; Carleman estimate; uniqueness; partial data; CALDERON PROBLEM; WAVE-EQUATIONS; UNIQUENESS RESULT; DIRICHLET; STABILITY; OPERATORS; RECONSTRUCTION;
D O I
10.1137/23M1588676
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an inverse problem of determining a time-dependent damping coefficient and potential appearing in the wave equation in a compact Riemannian manifold of dimension three or higher. More specifically, we are concerned with the case of conformally transversally anisotropic manifolds, or in other words, compact Riemannian manifolds with boundary conformally embedded in a product of the Euclidean line and a transversal manifold. With an additional assumption of the attenuated geodesic ray transform being injective on the transversal manifold, we prove that the knowledge of a certain partial Cauchy data set determines the time-dependent damping coefficient and potential uniquely.
引用
收藏
页码:5678 / 5722
页数:45
相关论文
共 69 条
  • [21] Calderon problem for connections
    Cekic, Mihajlo
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (11) : 1781 - 1836
  • [22] Abel transforms with low regularity with applications to x-ray tomography on spherically symmetric manifolds
    de Hoop, Maarten V.
    Ilmavirta, Joonas
    [J]. INVERSE PROBLEMS, 2017, 33 (12)
  • [23] Determining a magnetic Schroedinger operator from partial Cauchy data
    Dos Santos Ferreira, David
    Kenig, Carlos E.
    Sjostrand, Johannes
    Uhlmann, Gunther
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (02) : 467 - 488
  • [24] Inverse hyperbolic problems with time-dependent coefficients
    Eskin, G.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) : 1737 - 1758
  • [25] A new approach to hyperbolic inverse problems
    Eskin, G.
    [J]. INVERSE PROBLEMS, 2006, 22 (03) : 815 - 831
  • [26] Recovery of time-dependent coefficients from boundary data for hyperbolic equations
    Feizmohammadi, Ali
    Ilmavirta, Joonas
    Kian, Yavar
    Oksanen, Lauri
    [J]. JOURNAL OF SPECTRAL THEORY, 2021, 11 (03) : 1107 - 1143
  • [27] The Calderon problem in transversally anisotropic geometries
    Ferreira, David Dos Santos
    Kurylev, Yaroslav
    Lassas, Matti
    Salo, Mikko
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (11) : 2579 - 2626
  • [28] Limiting Carleman weights and anisotropic inverse problems
    Ferreira, David Dos Santos
    Kenig, Carlos E.
    Salo, Mikko
    Uhlmann, Gunther
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (01) : 119 - 171
  • [29] Friedlander G., 1998, INTRO THEORY DISTRIB
  • [30] Correlation based passive imaging with a white noise source
    Helin, T.
    Lassas, M.
    Oksanen, L.
    Saksala, T.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 116 : 132 - 160